
PROLOG CONTROL IN SIX SLIDES

Nils M Holm, July 2019 (with corrections, August 2019)

1. Introduction

PROLOG [Col75] [Kow74] is a language for

finding values that satisfy logical statements by match-

ing them against clauses contained in a database. A

PROLOG program itself consists of a set of

‘‘clauses’’, like

mortal(X) :- man(X).

meaning that ‘‘X is mortal, if X is a man’’. The

‘‘term’’ (or ‘‘goal’’) mortal(X) is a conclusion and

man(X) is a premise that has to be satisfied for the

conclusion to be true. There can be any number of

goals in the ‘‘body’’ (after the ‘‘:−’’) of a clause:

likes(john, X) :- tasty(X),

healthy(X).

This one means that John likes things that are

tasty and healthy. Capitalized symbols are variables,

lower-case symbols are ‘‘atoms’’ (constants). A ‘‘com-

pound term’’, like tasty(X), consists of a ‘‘functor’’

(tasty) followed by a positive number of comma-

separated ‘‘arguments’’ in parentheses. Clauses with-

out any premises are called ‘‘unit clauses’’ or ‘‘facts’’:

tasty(bananas).

tasty(bread).

tasty(chocolate).

healthy(bananas).

healthy(porridge).

healthy(bread).

A clause starting with the symbol ‘‘?−’’ is called

a ‘‘query’’. It is used to ask questions:

?- likes(john, chocolate).

no

?- likes(john, bananas).

yes

The true power of PROLOG is revealed when

there are multiple answers that satisfy a query. The

following facts represent the edges of the acyclic

graph in figure 1.

edge(a,b). edge(b,d). edge(d,h).

edge(a,f). edge(c,d). edge(h,e).

edge(a,g). edge(c,e). edge(h,f).

edge(b,c). edge(g,h).

a

b

c

e

hg

d

f

figure 1

The following program can then be used to find

paths inside of the graph. It consists of two clauses.

The first clause states that ‘‘there is a path [A, B] from

A to B, if there is an edge from A to B’’:

path(A,B,[A,B]) :- edge(A,B).

The term [A, B] denotes a list containing the ele-

ments A and B. The second clause states that ‘‘[A|CB]

is a path from A to B, if there is an edge from A to

some node C and a path CB from that node C to B’’:

path(A,B,[A|CB]) :- edge(A,C),

path(C,B,CB).

The term [A|CB] indicates a list whose head

(first element) is A and whose tail (list containing the

rest of its elements) is CB. The following query finds

all paths P from node a to node f :

?- path(a,f,P).

P = [a,f]

P = [a,b,c,d,h,f]

P = [a,b,d,h,f]

P = [a,g,h,f]

The query

?- path(A, B, P).

would find all paths P from any node A to any node B

in the graph. The output is not shown here, because it

is rather lengthy.

The PROLOG system finds all possible solutions

satisfying a query by systematically trying them and

backtracking when a partial solutions leads to a con-

tradiction.

− 1 −

2. Backtracking

From an implementor’s point of view, PROLOG

proves the conjunction of goals g1, . . . in the disjunc-

tion of rules r1, . . ., which is often thought of as an

AND/OR tree structure [KK71] as depicted in figure

2. g denotes a goal and r a rule that is used in an

attempt to prove the goal. A solution is a path through

the tree from the root to a leaf.

g1 r1 g3
. . .

g4
. . .

r2 g5
. . .

g6
. . .

. . .

OR

g2 r1 g3
. . .

g4
. . .

r2 g5
. . .

g6
. . .

. . .

OR

AND

. . .

figure 2

Proving a goal g using a rule r removes g from

the set of goals to be proven, but also adds the goals in

the body of r to the set. Only facts add no new goals.

They form the leaves of the tree. In order to prove a set

of goals, all rules are tried on every goal until either

the set of goals to be proven is empty or there are no

rules left to try. This is depicted in figure 3.

g1 r1

r2

r3

r4

g2 r1

r2

r3

r4

∅

figure 3

In the figure a solution is found by applying rule

r3 to g1 and r2 to g2. After g2 there are no more goals

to prove. Howev er, additional solutions might be

found by proving g2 using r3 or r4 or by proving g1

using r4, which would offer a completely new set of

options, because g2 could now be proven with each

rule again.

The process that finds all solutions systemati-

cally is called ‘‘backtracking’’. It finds the first rule r

satisfying a goal g and then proves any remaining

goals in the ‘‘context’’ of proving g using r. The con-

text of a proof is the set of bindings from variables to

values created during unification. When unification of

g and r fails, the next rule is tried and when no more

rules exist, PROLOG backtracks to the previous goal,

returning to a prior context and trying a different rule.

3. Unification

Unification [Rob65] is a process that attempts to

match two terms, like the head (conclusion) of a

clause and a goal. The process is described in detail in

the literature, so it shall only be outlined at this point.

Unification ‘‘succeeds’’, if two terms u and v can

be unified. Otherwise it fails. The terms u and v can be

unified, if

− u and v are the same atom

− u and v are variables bound to the same value

− either u or v is an unbound variable

− both u and v are compound terms whose elements

can be unified

When an unbound variable v is unified with

some term u, then u will become the value of v; v will

be ‘‘bound to’’ u. If both terms are variables, they will

‘‘co-refer’’ after the unification, i.e. they will always

bind to the same value.

A simple unification algorithm is given in the ap-

pendix.

4. Recursive Control

‘‘Control’’ [Ko w79] is the part of a PROLOG

system that controls the process of finding solutions

that satisfy a set of goals. It is the part of the system

that decides when to unify, when to backtrack, when

to halt, and where to backtrack to.

PROLOG control can easily be expressed as a

set of two recursive functions [Kah83] [BDF93], prove

and try, which is given here in R4RS Scheme [CR91]:

(define (try g r e n)

(if (null? r)

#f

− 2 −

(let* ((a (copy (car r)

(list n)))

(ne (unify (car g)

(car a)

e)))

(if ne

(prove3 (append

(cdr a)

(cdr g))

ne

(+ 1 n)))

(try g

(cdr r)

e

n))))

(define (prove3 g e n)

(cond ((null? g)

(print-frame e))

(else

(try g db e n))))

The prove function attempts to prove the goals in

the list g in the environment (context) e given the rules

in the list (database) db. The variable n is used to

copy the structure of a rule in order to make its vari-

able names unique, i.e. it turns

f(X) :- g(X), h(X).

into

f(Xn) :- g(Xn), h(Xn).

The algorithm of try is basically this:

− unify g1 with a copy of ri , giving a new context e′

− if unification succeeds, prove the remaining goals and

the body of ri in e′

− try the next rule ri+1 in e

The algorithm of prove is simple: when the list

of goals is empty, print all ‘‘instantiations’’ (bindings)

of the variables in the query and else try to prove g in

ev ery rule contained in the database db.

Prove calls try to prove a sequence of goals us-

ing any rule and try calls prove to add the body of a

rule to the set of goals to be proven. Try always tries

all rules, thereby searching the entire solution space

systematically.

When no goals remain to be proved, the instanti-

ations of the query variables form a solution satisfying

all goals of the query. The try/prove algorithms halts

when it runs out of rules.

The algorithm is straight-forward, but it relies

heavily on recursion, which causes a few problems:

(1) activation frames are allocated on the stack, which

may overflow while running a proof

(2) flow of control is implied, so this model does not

map well to low-level language implementations

(3) extensions that change the flow of control (like the

‘‘cut’’) would require catch/throw, continuations,

or a simlar mechanism

There are other, more explicit models for imple-

menting PROLOG, most prominently the Warren Ab-

stract Machine (WAM) [War83], which is notoriously

hard to implement [Ait91], as well as several simpli-

fied models of the WAM, which are still quite com-

plex. For instance, the implementation in [BDF93] still

has a size of 670 lines.

5. Control in Six Slides

The control algorithm presented here is explicit,

simple, and short. Its basic mode of operation can be

illustrated in six small panels, it keeps its state in a

stack structure that is under control of the program, so

it maps well to low-level languages, and it makes con-

trol explicit, so that extensions like the cut can be inte-

grated easily.

5.1. Slide 1: Registers

L

G

R

E

N

link, (L, G, R, E, N)

goals, {g1, . . .}

rules, {r1, . . .}

environment

time stamp

slide 1: registers

The model presented here includes the same reg-

isters as the recursive control algorithm: G is a list of

goals to prove, R is a list of rules available for proving

goals, E is an environment containing bindings from

variables to values, and N is a time stamp that is used

− 3 −

to make variables in rules unique.

There is one additional register, L, which serves

as a link between contexts. A ‘‘context’’ is a structure

containing all of the above registers, including L itself.

Hence it captures the entire state of a computation at a

given point. Because it contains its previous (outer)

context as one of its components, it implements the

call stack of the interpreter.

Initially, L = ∅, G contains a list of goals, R

contains a list of rules (including facts), E = ∅, and

N = 0. ∅ denotes the empty list.

5.2. Slide 2: Success

When unification of the first goal in G and the

first rule in R succeeds, the new state of the system is

constructed as follows:

L captures the current context. G is set to the

union of the body of the current rule and the remaining

goals, i.e. the first goal is removed from G and the

body of the current rule is added.

R is set to the entirety of rules known to the in-

terpreter (the database DB), so that all rules will be

tried in subsequent proof attempts. E will be extended

with the bindings created during unification, and N is

simply moved forward.

Slide 2, like all other slides, shows the original

state of the interpreter in the left column and the new

state in the right column.

L

G

R

E

N

Succeed
−−−−−−−−−→

(L, G, R, E, N)

body(first(R)) ∪ rest(G)

DB

E′

N + 1

slide 2: success

5.3. Slide 3: Refutation

When G = ∅ (the set of goals is empty), a solu-

tion to a query has been found. The instantiated query

variables will be printed. After that the state saved in

the L register will be restored and the first rule will be

removed from the R register. This second step imple-

ments backtracking. It attempts to prove the goals LG

of the previous context using alternative rules.

L

∅

R

E

N

Print
−−−−−−−−−→

LL

LG

rest(LR)

LE

LN

slide 3: refutation

5.4. Slide 4: Failure

When unfication of the first goal in G and the

first rule in R fails, then the rest of the rules is tried by

removing the first rule from R. All other registers re-

main unchanged. The rest of R may be empty, leading

to inconsistency (slide 5).

L

G

R

E

N

Fail
−−−−−−−−−→

L

G

rest(R)

E

N

slide 4: failure

5.5. Slide 5: Inconsistency

When R = ∅ (the set of rules is empty), no con-

sistent answer to the query could be found in the cur-

rent context. The previous context is restored and the

first rule (which lead to the current context) is re-

moved from that context. This is the same backtrack-

ing step as in slide 3.

L

G

∅

E

N

−−−−−−−−−→

LL

LG

rest(LR)

LE

LN

slide 5: inconsistency

− 4 −

5.6. Slide 6: Termination

When R = ∅ and L = ∅, i.e. there are no rules

left and there is no context to backtrack to, so the

computation is finished.

∅

G

∅

E

N

−−−−−−−−−→ halt

slide 6: termination

6. Implementation

The link structure is implemented as a list for

simplicity’s sake. Vectors, records, or even a stack of

context frames may be used instead.

(define link list)

(define L_l car)

(define L_g cadr)

(define L_r caddr)

(define L_e cadddr)

(define (L_n x) (car (cddddr x)))

The back procedure implements backtracking as

shown in slides 3, 4, and 5. It also handles the simple

case where goals are left to prove and rules are left to

try (slide 4) by just advancing to the next rule.

(define (back5 l g r e n)

(if (and (pair? g)

(pair? r))

(prove5 l g (cdr r) e n)

(prove5 (L_l l)

(L_g l)

(cdr (L_r l))

(L_e l)

(L_n l))))

The prove procedure first handles the cases

G = ∅

R = ∅ and L ≠ ∅

R = ∅ and L = ∅

as specified in slides 3, 5, and 6.

Its default case attempts to unify the head of the

first rule with the first goal. Depending on the result of

the unification, it implements slides 2 and 4.

(define (prove5 l g r e n)

(cond

((null? g)

(print-frame e)

(back5 l g r e n))

((null? r)

(if (null? l)

#t

(back5 l g r e n)))

(else

(let* ((a (copy (car r) n))

(e* (unify (car a)

(car g)

e)))

(if e*

(prove5

(link l g r e n)

(append (cdr a)

(cdr g))

db

e*

(+ 1 n))

(back5 l g r e n))))))

The prove procedure is tail-recursive and prove

and back are mutually tail-recursive. Hence the imple-

mentation does not make use of the internal stack of

the implementation language at all. The prove proce-

dure is merely a loop that modifies the state of the L,

G, R, E, N registers and back is a convenience proce-

dure that simplifies the code of prove. It could be in-

lined in prove without any further consequences.

7. Control with Cut in Nine Slides

The ‘‘cut’’ operator ‘‘!’’ is a goal that always

succeeds, but when backtracking over it, all goals to

its left will be ignored. For instance,

v(a). v(b).

?- v(X), v(Y).

will produce the following answers: (X = a, Y = a),

(X = a, Y = b), (X = b, Y = a), and (X = b, Y = b).

However,

?- v(X), !, v(Y).

will only produce the first two, because the process

will never backtrack to v(X).

− 5 −

In order to add the cut operator to the interpreter,

an additional register, C (‘‘cut point’’), is introduced.

Like the L register, it points to a previous context, but

not necessarily the immediate outer context. It points

to the most recent context where the head of a rule

could be successfully unified with a goal. See figure 4.

The C register is ∅ initially.

P g1 g2 ! g3 g4
L L L

L

P g1 g2 ! g3 g4
C

C C C C

figure 4

In the figure, the link L of each goal context gi

points to the previous goal, except for the link of g3,

which points to the cut point P, because it is preceded

by a cut. The C register of each context in the list of

goals also points to P.

Slide 1a introduces the C register, which points a

structure that is equal to that of the L register.

L

G

R

E

N

C

link, (L, G, R, E, N , C)

goals, {g1, . . .}

rules, {r1, . . .}

environment

time stamp

cut point, (L, G, {∅}, E, N , C)

slide 1a: registers with cut

When a goal matches a rule, a new cut point is

set up by copying the L register to the C register and

setting CR to {∅} (a rule set with a single empty rule).

See slide 2a. The empty rule will never be matched

and skipped when backtracking.

Slide 2a also injects an internal goal of the form

r!X into the set of goals to be proven, right after the

body of first(R). This goal is proven when the body of

first(R) succeeds. It will then also succeed and reset

the cut point to X . When first(R) does not succeed, C

will be reset by backtracking.

L

G

R

E

N

C

Succeed
−−−−−−−−−→

(L, G, R, E, N , C)

body(first(R)) ∪ {r!L}

∪ rest(G)

DB

E′

N + 1

{LL , LG , {∅}, LE , LN , LC}

slide 2a: success with cut

The slides 3a through 6a correspond to slides

3−6, but they also carry along the C register.

L

∅

R

E

N

C

Print
−−−−−−−−−→

LL

LG

rest(LR)

LE

LN

LC

slide 2a: refutation with cut

L

G

R

E

N

C

Fail
−−−−−−−−−→

L

G

rest(R)

E

N

C

slide 4a: failure with cut

L

G

∅

E

N

C

−−−−−−−−−→

LL

LG

rest(LR)

LE

LN

LC

slide 5a: inconsistency with cut

− 6 −

∅

G

∅

E

N

C

−−−−−−−−−→ halt

slide 6a: termination with cut

7.1. Slide 7: Cut

When a cut operator (!) is encountered in G, the

operator is removed from G and the cut context is

copied from the C register to the L register of the fol-

lowing goal g. When backtracking is thereafter initiat-

ed in the context of g, control will not be transferred to

the previous goal, but to the backtracking point P, as

shown in figure 4.

L

[!, g, . . .]

R

E

N

C

−−−−−−−−−→

C

[g, . . .]

R

E

N

C

slide 7: cut

7.2. Slide 8: Reset Cut Point

When a ‘‘procedure’’ (a collection of clauses

with a common functor) is exited, the C register will

be reset to the cut point of the calling procedure. This

is done by the internal goal r!X , which copies its argu-

ment X to the C register.

L

[r!X , g, . . .]

R

E

N

C

−−−−−−−−−→

L

[g, . . .]

R

E

N

X

slide 8: reset cut point

7.3. Slide 9: Top-Level Cut

The following definition is a common version of

the member predicate that will succeed only once

with the first matching member:

member1(X, [X|T]) :- !.

member1(X, [Y|T]) :- member1(X, T).

For instance:

?- member1(X, [a,b,c]).

X = a

When this query is submitted directly the inter-

preter, then it will reach a configuration where there

are no more goals to prove and there is no context to

return to after backtracking over the cut, but there

might still be rules left to try.

This cannot happen in the model without cut, so

this special case has to be handled in an additional

slide.

∅

∅

R

E

N

C

−−−−−−−−−→ halt

slide 9: top-level cut

8. Implementation with Cut

An accessor for the C register is added. Acces-

sors for the other registers remain the same as in the

previous implementation.

(define (L_c x) (cadr (cddddr x)))

The clear_r procedure sets the R register of a

cut point (link structure) to (∅). This can be done de-

structively, because cut points will never get ‘‘uncut’’.

(define (clear_r x)

(set-car! (cddr x) ’(())))

Slide 9 is implemented in the back procedure.

When G = ∅ and L = ∅, the procedure simply returns

and, because it is mutually tail-recursive with prove,

this means that the entire process will terminate.

− 7 −

(define (back6 l g r e n c)

(cond

((and (pair? g)

(pair? r))

(prove6 l g (cdr r) e n c))

((pair? l)

(prove6 (L_l l)

(L_g l)

(cdr (L_r l))

(L_e l)

(L_n l)

(L_c l)))))

Some minor changes in prove implement slides

2a, 7, and 8: (2a) When prove recurses after success-

ful unification it copies L to C. (7,8) Two new cases

are added to handle cut (!) and reset-cut (r!) goals.

The additional cases have to be placed before the

one that tests R = ∅, because a cut may still appear

while R = ∅.

(define (prove6 l g r e n c)

(cond

((null? g)

(print-frame e)

(back6 l g r e n c))

((eq? ’! (car g))

(clear_r c)

(prove6 c (cdr g) r e n c))

((eq? ’r! (car g))

(prove6 l (cddr g) r e n

(cadr g)))

((null? r)

(if (null? l)

#t

(back6 l g r e n c)))

(else

(let* ((a (copy (car r) n))

(e* (unify (car a)

(car g)

e)))

(if e*

(prove6

(link l g r e n c)

(append (cdr a)

‘(r! ,l)

(cdr g))

db

e*

(+ 1 n)

l)

(back6 l g r e n c))))))

9. Conclusion and Perspective

The implementation method presented here is

simple, extensible, and suitable for many modifcations

to improve performance. For instance, the link struc-

ture could be placed on a stack, with one of its compo-

nents per stack slot, thereby eliminating all consing re-

lated to the forward and backward process. The bind-

ing method is (mostly) independent from the model,

so more efficient methods can be chosen.

In an experimental implementation clause index-

ing and shallow binding have been successfully com-

bined with the 9-slide algorithm. Last-call optimiza-

tion should be possible, but exploring this shall be

postponed to a later point.

10. Appendix: Source Code

The proof of concept code in the appendix repre-

sents clauses as Scheme lists, atoms as symbols, and

variables as lists of the form

(? name)

Unit clauses are singleton lists and rules are lists

with multiple elements, where the first one is the head

and the rest forms the body of the rule. For instance,

mortal(X) :- man(X).

would be encoded as

((mortal (? x)) (man (? x)))

Deep-binding of variables to values is done via

association lists.

10.1. Unification

(define empty ’((bottom)))

(define var ’?)

(define name cadr)

(define time cddr)

(define (var? x)

(and (pair? x)

(eq? var (car x))))

(define (lookup v e)

− 8 −

(let ((id (name v))

(t (time v)))

(let loop ((e e))

(cond

((not (pair? (caar e)))

#f)

((and

(eq? id (name (caar e)))

(eqv? t (time (caar e))))

(car e))

(else

(loop (cdr e)))))))

(define (value x e)

(if (var? x)

(let ((v (lookup x e)))

(if v

(value (cadr v) e)

x))

x))

(define (copy x n)

(cond

((not (pair? x)) x)

((var? x) (append x n))

(else

(cons (copy (car x) n)

(copy (cdr x) n)))))

(define (bind x y e)

(cons (list x y) e))

(define (unify x y e)

(let ((x (value x e))

(y (value y e)))

(cond

((eq? x y) e)

((var? x) (bind x y e))

((var? y) (bind y x e))

((or (not (pair? x))

(not (pair? y))) #f)

(else

(let ((e* (unify (car x)

(car y)

e)))

(and e* (unify (cdr x)

(cdr y)

e*)))))))

10.2. Printing Frames

(define (resolve x e)

(cond ((not (pair? x)) x)

((var? x)

(let ((v (value x e)))

(if (var? v)

v

(resolve v e))))

(else

(cons

(resolve (car x) e)

(resolve (cdr x) e)))))

(define (print-frame e)

(newline)

(let loop ((ee e))

(cond

((pair? (cdr ee))

(cond

((null? (time

(caar ee)))

(display (cadaar ee))

(display " = ")

(display

(resolve (caar ee)

e))

(newline)))

(loop (cdr ee))))))

10.3. Example Programs

;; Graph example from section 1

(define db

’(((edge a b))

((edge a f))

((edge a g))

((edge b c))

((edge b d))

((edge c d))

((edge c e))

((edge g h))

((edge d h))

((edge h e))

((edge h f))

− 9 −

((path (? A)

(? B)

((? A) (? B)))

(edge (? A) (? B)))

((path (? A)

(? B)

((? A) . (? CB)))

(edge (? A) (? C))

(path (? C) (? B) (? CB)))))

(define goals ’((path a f (? P))))

; recursive PROVE

(prove3 goals empty 1)

; 6-slide PROVE

(prove5 ’() goals db empty 1)

;; Negation as failure

(define db

’(((some foo))

((some bar))

((some baz))

((eq (? X) (? X)))

((neq (? X) (? Y))

(eq (? X) (? Y)) ! fail)

((neq (? X) (? Y)))))

(define goals ’((some (? X))

(some (? Y))

(neq (? X) (? Y))))

; 9-slide PROVE

(prove6 ’() goals db empty 1 ’())

11. Corrections

Corrections were made to slides 2a and 7 in or-

der to support cuts in recursive clauses. Slide 8 was

added to simplify cuts (and the original slide 8 became

slide 9).

12. References

[Ait91]

Hassan Ait-Kaci; ‘‘Warren’s Abstract Machine: A

Tutorial Reconstruction’’; MIT Press, 1991.

[BDF93]

Patrice Boizumault, Ara M. Djamboulian, Jamal

Fattouh; ‘‘The Implementation of Prolog’’; Prince-

ton University Press, 1993

[Col75]

Alain Colmerauer; ‘‘Les Grammaires de Metamor-

phose’’; Groupe d’Intelligence Artificielle, Mar-

seille-Luminy Universite, Nov 1975; Appears as

‘‘Metamorphosis Grammars’’ in "Natural Lan-

guage Communication with Computers", Springer

1978.

[CR91]

William Clinger, Jonathan Rees (Editors); ‘‘Re-

vised4 Report on the Algorithmic Language

Scheme’’; ACM SIGPLAN Lisp Pointers, Volume

IV Issue 3, July, 1991, Pages 1-55

[Kah83]

Ken Kahn; ‘‘A Pure Prolog Written In Pure Lisp’’;

SAIL AIList Digest V1, #47, 1983

[Kow74]

Robert Kow alski; ‘‘Logic for Problem Solving’’;

DCL Memo 75, Department of AI, University of

Edinburgh, Mar 74.

[Kow79]

Robert Kow alski; ‘‘Algorithm = Logic + Control";

Communications of the ACM (CACM), Volume 22

Issue 7, July 1979, Pages 424-436

[KK71]

Robert Kow alski, Donald Kuehner; ‘‘Linear Reso-

lution with Selection Function’’; Artificial Intelli-

gence 2(3):227-260, December 1971

[Rob65]

John A. Robinson; ‘‘A Machine-Oriented Logic

Based on the Resolution Principle’’; Journal of the

ACM (JA CM), Volume 12 Issue 1, Jan. 1965,

Pages 23-41

[War83]

David H. D. Warren; ‘‘An Abstract Prolog Instruc-

tion Set’’; Technical Note No 309, SRI Internation-

al, Menlo Park, CA, 1983.

− 10 −

