
A STA CKLESS FLOODFILL AUTOMATON

Nils M Holm, Jan 2023

1. The Algorithm

Floodfill is an algorithm that, given any point within a pixel-based representation of any

shape, fills the entire shape with a given color. The algorithm is recursive by nature, because at

any giv en point it has to try filling four adjacent points and then return to the origin, so the coor-

dinates of each origin pixel are normally kept on a stack.

If you can spare 16 colors, though, no stack is needed.† Using those 16 otherwise unused

color values, the following states of a finite state automaton can be encoded:

→

→

→

↓

→

←

→

↑

↓
→

↓
↓

↓
←

↓
↑

←

→

←

↓

←

←

←

↑

↑
→

↑
↓

↑
←

↑
↑

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

The upper left arrow in a state X denotes the direction in which the origin pixel lies, i.e. the

pixel from which pixel X was tried. The lower right arrow denotes the direction to try next, us-

ing X itself as the origin. State pixels are stored directly in the image.

If another 4 values can be spared, the following four states can be added, which indicate the

pixel at which the floodfill started, so there is no pixel from which this state originated. These

states are not strictly necessary, though, because the coordinates of the starting point can be

stored and used to identify this point.

∅

→

∅

↓

∅

←

∅

↑

† Nor any other dynamic data structure. I have created the stackless variant for use in a text-based minesweeper game

on a BASIC system with only 7K bytes of program memory and 30 levels of subroutine nesting.

− 1 −

∅

→

∅

→

←

↓

∅

→

←

↓

↑
←

∅

→

←

↓

↑
←

→

←

∅

→

←

↓

↑
←

→

←

→

↑

∅

→

←

↓

↑
←

→

←

→

↑

↓
↑

∅

→

←

↓

↑
←

→

←

→

↑

↓
↑

↓
→

∅

→

←

↓

↑
←

→

←

→

↑

↓
↑

↓
→

←

→
∅

→

←

↓

↑
←

→

←

→

↑

↓
↑

↓
→

←

→

←

∅

1 2 3

4 5 6

7 8 9

The above panels illustrate how the stackless floodfill works. It starts at the center (1) and

tries the right direction first. There is no boundary condition found in the pixel to the right. A

boundary exists when the pixel to be tried is already filled, either by a state or the fill color, or

when another condition is met (such as reaching the edge of the image).

Because the right pixel can be filled, it is filled with a state indicating that its origin is to the

left (2). There is no further pixel to the right, though, so the downward direction is tried next,

which works.

In panel (3) the new state refers back to the pixel on the top. There is no unfilled pixel to

the right nor at the bottom, so the left direction is tried next (and works).

In panel (5) the upward direction has to be used, because no unfilled pixel is on the right,

left, or at the bottom.

The process continues until the upper right corner is reached in panel (9). Because all pixels

are filled with state information at that point, there is no direction to turn to from the upper right

pixel. The direction arrows (lower right) point all the way from the starting point to the upper

right corner, and the origin arrows (upper left) point all the way back.

− 2 −

∅

→

←

↓

↑
←

→

←

→

↑

↓
↑

↓
→

←

∅
∅

→

←

↓

↑
←

→

←

→

↑

↓
↑

↓
∅

∅

→

←

↓

↑
←

→

←

→

↑

↓
∅

∅

→

←

↓

↑
←

→

←

→

∅

∅

→

←

↓

↑
←

→

∅

∅

→

←

↓

↑
∅

∅

→

←

∅

∅

∅

10 11 12

13 14 15

16 17 18

When there is no direction to go to, as indicated by the ∅ symbol in the place of a direction

arrow, the current pixel is filled with the fill color and the origin arrow is used to return to the

origin pixel of the current pixel.

The algorithm then backtracks all the way to the starting pixel and replaces all state pixels

that have no direction left to try with the fill color. Of course the example is simplified. In a

more complex shape, there may be multiple directions to follow at a giv en point, so when return-

ing to a pixel, a new branch may be started before running out of choices.

In any case, though, the algorithm will eventually end up at the starting point, which is

identified either by a state with an origin of ∅ or by its coordinates. The starting point is then

filled with the fill color and the algorithm terminates.

Like recursive floodfill the algorithm has linear O(n) complexity, where n is the number of

pixels to fill (O(4n) to be precise, because it will try all four directions for each pixel). It can be

extended to hex grids or voxel spaces, but then you will have to make use of 36 spare colors.

− 3 −

2. An Implementation

Here is an implementation in a minimal BASIC that I have created in the early 1990’s.

There should not be any surprises. a/b is the floored quotient of a and b, and a\b is the remain-

der of a/b.

500 LET N = 1

505 IF X < 0 GOTO 580

510 IF X >= Xmax GOTO 580

515 IF Y < 0 GOTO 580

520 IF Y >= Ymax GOTO 580

530 IF Z (Y * Xmax + X) <> EmptyColor GOTO 580

535 REM ’More boundary conditions here’

540 LET Z (Y * Xmax + X) = N

545 IF N \ 100 = 5 LET Z (Y * Xmax + X) = FillColor

550 LET D = N \ 100

555 IF D = 1 LET X = X + 1 : LET N = 301 : GOTO 505

560 IF D = 2 LET Y = Y + 1 : LET N = 401 : GOTO 505

565 IF D = 3 LET X = X - 1 : LET N = 101 : GOTO 505

570 IF D = 4 LET Y = Y - 1 : LET N = 201 : GOTO 505

580 LET P = N / 100

585 IF P = 0 RETURN

590 IF P = 1 LET X = X + 1

595 IF P = 2 LET Y = Y + 1

600 IF P = 3 LET X = X - 1

605 IF P = 4 LET Y = Y - 1

610 LET N = Z (Y * Xmax + X) + 1

620 GOTO 540

States are represented by numbers of the form n = 100 p + d , where p is the origin (or ‘‘par-

ent’’) and d is the direction. Right=1, down=2, left=3, up=4, ‘‘out of choices’’=5, and ‘‘starting

pixel’’=0.

EmptyColor is the color to be replaced and FillColor is the color with which the shape

shall be filled.

Z is a single-dimension array with a size of Xmax × Ymax. When filling visual shapes this

would be an image or the video memory.

The boundary conditions in lines 505−520 make sure that the algorithm does not leave the

array Z if the shape to fill intersects with its border. This is not necessary when the shape, in-

cluding its border, lies entirely within Z.

Line 610 selects the next direction using Z (Y × Xmax + X) + 1, which means that the direc-

tion codes in the states have to hav e successive values.

− 4 −

