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What’s New in this Edition?
First of all, the third edition reflects the current version of the S9fES code (2014-07-21). In the last years,

lots of small changes have been incorporated into the code base, including their descriptions in prose.

These were mostly small things, the basic structure of the interpreter has not changed much in the past

four years. The only major modification was an adaption of the image file format to systems that use

address space layout randomization (ASLR) or position independent code (PIC).

Then there were a few typos, markup glitches, and sentences that could use clarification. So the new

edition is mostly a cleaned-up, slightly extended, and updated version of the 2nd edition.

The only thing that is new is a very short chapter demonstrating that syntax-rules actually can

count by bending the rules a bit. The previous edition claimed that this was impossible (which it is from

a practical point of view), but I thought it might be fun to include a counter-proof in the text.

All in all, I think that the 3rd edition is a better book than its predecessors. Mostly because the prose

has been streamlined once again, so I think it is an even easier read than the previous versions. The

topic is hard enough, so at least the prose should be fun and easy to comprehend.

I hope you will enjoy the new edition!

Nils M Holm, June 2014
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A Guided Tour through the Code

Scheme 9 from Empty Space (S9fES) is an interpreter for R4RS Scheme. It is itself written in ANSI

C (C89) and Scheme. The S9fES code strives to be clear and comprehensible. It is portable without

being inefficient or incomplete. If you want to study the implementationof a real-world Scheme system,

including the nitty gritty bits, such as continuations, macros, tail-call elimination, bignum arithmetics,

floating point arithmetics, constant-space garbage collection with compaction, etc., this text should be

a good starting point.

The book is not exactly for beginners, because the better part of it consists of code. Although the code

is very straight-forward, some familiarity with both C and Scheme is required to follow it.

The code appears in the same order as in the actual source files,so some forward references will occur.

Expect to read the text at least twice unless you jump to forward references while reading it. If you

intend to do so: the index contains the page number of each function,procedure,constant,and variable

declared anywhere in the program.

Because the text contains the entire code of the interpreter, there will be advanced parts and easy

parts.Feel free to skip parts that you consider to be trivial.Parts that are complex can often be identified

by the amount of annotations and figures that surround them.

You might even want to download a copy of the source code from the Scheme 9 from Empty Space

section at T3X.ORG [http://t3x.org] (if it still exists!) and study the actual code and the book at the

same time.

If you are reading a colored copy of this text, the following colors are used to highlight individual parts

of the code sections. The following is a sample Scheme code section:

; Sample What it is

; ----------------- ---------------------

#|explanation|# a comment

(()) parentheses

foo-frobnicate a user-defined symbol

"hello, world!" a data literal

string-ci=? a Scheme procedure

define Scheme syntax

reverse! a S9fES extension

And here comes a sample C section:

/* Sample What it is */

/* ----------------- ------------------------- */

/* explanation */ a comment

{}; punctuation

foo_frobnicate a user-defined symbol

"hello, world!" a data literal

fopen an ANSI C library function

void C syntax

__nuxi__ a language extension/macro

However, if you are watching this show in black and white, that’s fine, too. The colors are not really

necessary to understand what’s going on!
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In any case the text uses different fonts for different types of code. In annotations,

Scheme code and C code

are rendered in a typewriter font and may be placed in boxes or enclosed by vertical brackets.

Parameters and procedure arguments (variables) print in italics. Furthermore, the following notations

are used

form1 ---> form2 denotes the transformation of form1 to form2

type1 --> type2 denotes a procedure that maps type1 to type2

(p t1 ...) --> type denotes a procedure p of types t1... --> type

f ==> v denotes the evaluation of a form f to a value v

("f evaluates to v")

Annotations (which are rendered in the same font as this text) always precede the code that they

describe -- mostly C functions or Scheme procedures. There are also some inline annotations which

are ordinary C or Scheme comments.

In case you wonder why some parts of box diagrams have a gray background:unless the related prose

indicates otherwise, this means that the corresponding object is an atom.

Feel free to use, modify and redistribute the Scheme 9 from Empty Space code, it is in the public

domain (which means: do whatever you please with it).

And now: enjoy the tour!

Nils M Holm, October 2010

12



Declarations (Header)

/*

* Scheme 9 from Empty Space

* By Nils M Holm, 2007-2014

* Placed in the Public Domain

*/

Prelude

This section uses nested #ifdef instead of #if in order to support the Plan 9 C language

[http://plan9.bell-labs.com/sys/doc/compiler.html],which intentionally omits #if.

Because we want to support both Un*x and Plan 9, we will have to figure out where we are compiling.

/*

* Ugly prelude to figure out if

* we are compiling on a Un*x system.

*/

#ifdef __NetBSD__

#ifndef unix

#define unix

#endif

#endif

#ifdef __unix

#ifndef unix

#define unix

#endif

#endif

#ifdef __linux

#ifndef unix

#define unix

#endif

#endif

#ifndef unix

#ifndef plan9

#error "Either ’unix’ or ’plan9’ must be #defined."

#endif

#endif

Next, we set up some OS-dependent stuff, mostly to make the OS-specific procedures in the Un*x

extension work on Linux. See your favorite Un*x/POSIX/Plan 9 programming literature for details.

#ifdef unix

#ifndef _BSD_SOURCE

#define _BSD_SOURCE

#endif

#ifndef __FreeBSD__

#ifndef __NetBSD__

15



#ifndef _POSIX_SOURCE

#define _POSIX_SOURCE

#define _POSIX_C_SOURCE 200112L

#endif

#ifndef _XOPEN_SOURCE

#define _XOPEN_SOURCE 500

#endif

#endif

#endif

#endif

#ifdef plan9

#include <u.h>

#include <libc.h>

#include <stdio.h>

#include <ctype.h>

#define NO_SIGNALS

#define signal(sig, fn)

#define exit(x) exits((x)? "error": NULL)

#define ptrdiff_t int

#endif

#ifdef unix

#include <stdlib.h>

#include <stddef.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#ifdef NO_SIGNALS

#define signal(sig, fn)

#else

#include <signal.h>

#ifndef SIGQUIT

/* MinGW does not define SIGQUIT */

#define SIGQUIT SIGINT

#endif

#endif

#endif

The company who brought you the unspeakable horror has to do its own thing once again, so

/*

* Tell later MSC compilers to let us use the standard CLIB API.

* Blake McBride < b l a k e @ m c b r i d e . n a m e >

*/

#ifdef _MSC_VER

#if _MSC_VER > 1200

#ifndef _CRT_SECURE_NO_DEPRECATE

#define _CRT_SECURE_NO_DEPRECATE

#endif

#endif

#ifndef _POSIX_

#define _POSIX_

#endif

#endif

16



Configuration

DEFAULT_LIBRARY_PATH will be searched by the interpreter for heap images, library packages,

help files, etc. It can be overridden with a command line flag.

#ifndef DEFAULT_LIBRARY_PATH

#define DEFAULT_LIBRARY_PATH \

"." \

":lib" \

":ext" \

":contrib" \

":~/.s9fes" \

":/usr/local/share/s9fes"

#endif

INITIAL_SEGMENT_SIZE is the initial number of "nodes" in the cons pool and "cells" in the vector

pool. The terms will be explained in the following.

TOKEN_LENGTH is the maximum length of various objects, such as string and character literals,

symbols, path names, etc.MAX_PORTS is the maximum number of input and output ports that can be

kept open simultaneously.MAX_IO_DEPTH is the maximum depth (number of nested objects) of a list

or vector to read or print.MAX_CALL_TRACE is the maximum number of recently called procedures

to remember for error reporting.

HASH_THRESHOLD is the size of the smallest lexical environment that will be hashed. This value is

rather arbitrary. It has been determined through experimentation.

#ifndef INITIAL_SEGMENT_SIZE

#define INITIAL_SEGMENT_SIZE 32768

#endif

#define TOKEN_LENGTH 1024

#define MAX_PORTS 32

#define MAX_IO_DEPTH 65536 /* Reduce on 16-bit systems! */

#define HASH_THRESHOLD 5

#define MAX_CALL_TRACE 100

The DEFAULT_LIMIT_KN constant specifies the maximum number of nodes that will ever be

allocated by the interpreter. The rather peculiar default value is based on the way in which segment

sizes grow. Each time a new memory segment is added, the segment size grows by a factor of 3/2, so

the allocation sequence reaches this pool size when growing the pool for the 12th time.

/* Default memory limit in K-nodes, 0 = none */

#define DEFAULT_LIMIT_KN 12392

A cell is an atomic storage location that is large enough to hold a C pointer. It will be used to store

conses, bignum segments, and other interesting stuff. The ptrdiff_t type appears to be a natural

choice in ANSI C environments.

/* A "cell" must be large enough to hold a pointer */

#define cell ptrdiff_t

Really don’t use the following!

/* 64-bit emulation on 32-bit system; DO NOT USE! */

#ifdef EMULATE_64
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#undef BITS_PER_WORD_32

#define BITS_PER_WORD_64

#undef cell

#define cell long long

#define labs(x) llabs(x)

#define atol(x) atoll(x)

#endif

Always use BITS_PER_WORD_32 on 32-bit platforms. BITS_PER_WORD_64 improves numer-

ic performance on 64-bit systems. The BITS_PER_WORD_16 option is mostly a lie. While it theo-

retically is possible to compile S9fES on 16-bit systems, it will not allow you to run a lot of interesting

programs.

/* Pick one ... */

/* #define BITS_PER_WORD_64 */

/* #define BITS_PER_WORD_32 */

/* #define BITS_PER_WORD_16 */

/* ... or assume a reasonable default */

#ifndef BITS_PER_WORD_16

#ifndef BITS_PER_WORD_32

#ifndef BITS_PER_WORD_64

#define BITS_PER_WORD_32

#endif

#endif

#endif

An "integer segment" is an atomic computational unit that is used in bignum arithmetics. This will be

explained in detail in the section dealing with bignums. The larger an integer segment is, the faster

the numeric operations will be. INT_SEG_LIMIT specifies the smallest value that cannot be

represented by an integer segment. DIGITS_PER_WORD specifies the number of decimal digits

per segment. Note that integer arithmetics is basically base-10n internally, where n depends on the

segment size. MANTISSA_SEGMENTS is the number of integer segments used to represent the

mantissa of a real number.MANTISSA_SIZE is the number of digits in a mantissa.

/*

* N-bit arithmetics require sizeof(cell) >= N/8.

* When MANTISSA_SIZE (below) gets more than 60 places, you

* will have to supply a better value for PI in "s9-real.scm".

*/

#ifdef BITS_PER_WORD_64

#define DIGITS_PER_WORD 18

#ifdef EMULATE_64

#define INT_SEG_LIMIT 1000000000000000000LL

#else

#define INT_SEG_LIMIT 1000000000000000000L

#endif

#define MANTISSA_SEGMENTS 1

#else

#ifdef BITS_PER_WORD_32

#define DIGITS_PER_WORD 9

#define INT_SEG_LIMIT 1000000000L

#define MANTISSA_SEGMENTS 2

#else

#ifdef BITS_PER_WORD_16

#define DIGITS_PER_WORD 4

#define INT_SEG_LIMIT 10000
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#define MANTISSA_SEGMENTS 3

#else

#error "BITS_PER_WORD_* undefined (this should not happen)"

#endif

#endif

#endif

/* Mantissa sizes differ among systems */

#define MANTISSA_SIZE (MANTISSA_SEGMENTS * DIGITS_PER_WORD)

Internals

Most of the_TAG constants control the garbage collector (GC).ATOM_TAGmarks a node (see below)

"atomic" in the sense of Scheme: it is not a cons cell, but an object that cannot be decomposed at

Scheme-level. From the GC’s point of view, this means that its "car" field is not a reference to another

node and hence must not be followed. A node with the ATOM_TAG set is called an "atom".

The MARK_TAG marks a node "used" during GC. TheSTATE_TAG together withMARK_TAG is used

to store the two-bit state of a node during garbage collection (also GC).

VECTOR_TAG marks a vector object (vector or string), which references space in the separate vector

pool. PORT_TAG indicates an I/O port, which may be closed by the GC when it is no longer used.

USED_TAG marks an I/O port as "used" -- this may be thought of as a "marked" tag for ports. When

an I/O port has the LOCK_TAG set, it may not be closed, even if it is not used.

Note: USED_TAG and LOCK_TAG are stored in Port_flags[] rather than in Tag.

CONST_TAG is the only tag that is not used by the GC. It indicates that the corresponding object is

immutable. It is set, for instance, in string literals, vector literals, and all nodes of quoted lists.

/*

* Node tags

*/

#define ATOM_TAG 0x01 /* Atom, Car = type, CDR = next */

#define MARK_TAG 0x02 /* Mark */

#define STATE_TAG 0x04 /* State */

#define VECTOR_TAG 0x08 /* Vector, Car = type, CDR = content */

#define PORT_TAG 0x10 /* Atom is an I/O port (with ATOM_TAG) */

#define USED_TAG 0x20 /* Port: used flag */

#define LOCK_TAG 0x40 /* Port: locked (do not close) */

#define CONST_TAG 0x80 /* Node is immutable */

EVAL_STATES is an enumeration of the states that the evaluator may cycle through while reducing

an expression to its normal form. It will be explained in detail in the evaluator section.

/*

* Evaluator states

*/

enum EVAL_STATES {

EV_ATOM, /* Evaluating atom */

EV_ARGS, /* Evaluating argument list */

EV_BETA, /* Evaluating procedure body */

EV_IF_PRED, /* Evaluating predicate of IF */
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EV_SET_VAL, /* Evaluating value of SET! and DEFINE */

EV_MACRO, /* Evaluating value of DEFINE-SYNTAX */

EV_BEGIN, /* Evaluating expressions of BEGIN */

EV_AND, /* Evaluating arguments of AND */

EV_OR, /* Evaluating arguments of OR */

EV_COND /* Evaluating clauses of COND */

};

A "binding" is a structure of the form shown in fig.1.

Binding/Box

Car Cdr

Name

Value

[Fig.1: Binding structure]

The car part of the binding is a symbol naming the variable implemented by the binding. The cdr part

contains the value of the variable.

Note that the Scheme storage model says that a variable is created by binding a symbol to a storage

location rather than a value. This actually holds for the above, because we use the binding itself as a

storage "box" and the set-cdr! operation to alter the value inside of that box.

The binding_box() and binding_value() macros access the storage location of a binding

and the value stored in it. box_value() is used to access the value when given a box. It is the

same as binding_value() due to the above optimization. make_binding() creates a

new binding.

Car is used to access the name of a binding, because we routinely use caar and friends to process

environments (lists of bindings), which breaks any abstraction of the name field anyway.

/*

* Binding structure

*/

#define make_binding(v, a) (cons((v), (a)))

#define binding_box(x) (x)

#define binding_value(x) (cdr(x))

#define box_value(x) (cdr(x))

"Special objects" are represented by negative values.Although they are atomic, they are no atoms (you

may think of them as "virtual particles").Atoms are nodes and nodes are identified by a (positive) offset

into the node pool. So their negative value is sufficient to mark special objects as such.

NIL is (), TRUE is #t, FALSE is #f, END_OF_FILE is the "EOF object" (as identified by the

eof-object? procedure), UNDEFINED is an undefined value (used internally), UNSPECIFIC

is an unspecific value as returned by set!, etc, NAN is an invalid numeric result ("not a number"),

DOT marks the dot of a dotted list internally in the reader, RPAREN marks a closing parenthesis and

RBRACK a closing bracket.NOEXPR denotes an unspecific source when reporting an error.

/*

* Special objects

*/
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#define special_value_p(x) ((x) < 0)

#define NIL (-1)

#define TRUE (-2)

#define FALSE (-3)

#define END_OF_FILE (-4)

#define UNDEFINED (-5)

#define UNSPECIFIC (-6)

#define NAN (-7)

#define DOT (-8)

#define RPAREN (-9)

#define RBRACK (-10)

#define NOEXPR (-11)

Types are also special objects. They appear in the car parts of atoms to indicate the types of Scheme

objects. Each of the following constants resembles the corresponding Scheme data type, except for

those:

T_NONE indicates "no specific type" in type checking. T_PAIR_OR_NIL matches either a pair or

().

T_PRIMITIVE is used to mark primitive procedures and T_CONTINUATION marks continuations

internally. To the type checker, these constants are synonyms of T_PROCEDURE.

T_SYNTAX marks macros.

/*

* Types

*/

#define T_NONE (-20)

#define T_BOOLEAN (-21)

#define T_CHAR (-22)

#define T_INPUT_PORT (-23)

#define T_INTEGER (-24)

#define T_OUTPUT_PORT (-25)

#define T_PAIR (-26)

#define T_PAIR_OR_NIL (-27)

#define T_PRIMITIVE (-28)

#define T_PROCEDURE (-29)

#define T_REAL (-30)

#define T_STRING (-31)

#define T_SYMBOL (-32)

#define T_SYNTAX (-33)

#define T_VECTOR (-34)

#define T_CONTINUATION (-35)

/*

* Short cuts for primitive procedure definitions

* Yes, ___ violates the C standard, but it’s too tempting

*/

#define BOL T_BOOLEAN

#define CHR T_CHAR

#define INP T_INPUT_PORT

#define INT T_INTEGER

#define LST T_PAIR_OR_NIL

#define OUP T_OUTPUT_PORT

#define PAI T_PAIR
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#define PRC T_PROCEDURE

#define REA T_REAL

#define STR T_STRING

#define SYM T_SYMBOL

#define VEC T_VECTOR

#define ___ T_NONE

The Primitive_procedure structure holds information about a primitive procedure, i.e. a

Scheme procedure that is implemented in C. name holds the name of the procedure, (e.g. "cdr"),

handler is a pointer to a C function that maps a tree of nodes to a tree of nodes, min_args and

max_args contain the minimum and maximum number of arguments that may be passed to a proce-

dure.max_args=-1indicates that a procedurehas no upper argument limit;the procedure is "variadic".

The arg_types[] array holds the types (see above) of the first three arguments of the primitive

procedure. Types of subsequent arguments must be checked by the procedure itself.

struct Primitive_procedure {

char *name;

cell (*handler)(cell expr);

int min_args;

int max_args; /* -1 = variadic */

int arg_types[3];

};

#define PRIM struct Primitive_procedure

PRIM_SEG_SIZE is the number of primitive procedure slots to be allocated at once when adding

primitives.Thisnumber shouldbesufficient toholdallcoreprimitives,toavoidunnecessary re-allocation

of the Primitives array during initialization.

#define PRIM_SEG_SIZE 256

Global Variables

These are the global variables used by the interpreter. EXTERN is pre-defined to expand to nothing

when included by the main program. When included by extensions (which must not define EXTERN),

the below #define will make the globals "extern".

/*

* Globals

*/

#ifndef EXTERN

#define EXTERN extern

#endif

Cons_segment_size and Vec_segment_size specify the sizes of the segments that have

just been added to the corresponding pools. Each time a new segment is added, these values grow by

a factor of 3/2.Cons_pool_size and Vec_pool_size hold the current total sizes of the pools.

EXTERN int Cons_segment_size,

Vec_segment_size;

EXTERN int Cons_pool_size,

Vec_pool_size;

The next three variables implement both the node pool and the node data structure. Each node has
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three fields named "car", "cdr", and "tag". When a node implements a "cons cell" (or just "cons"), car

and cdr point to the car and cdr part of that cons cell, respectively.

The tag field holds various meta information about the node, which is mostly connected to typing and

garbage collection. Atomic nodes (integers, strings, vectors, procedures, etc) have the ATOM_TAG bit

set in the tag field. Conses have the ATOM_TAG cleared.

Each node is identified by its offset into the Car,Cdr, and Tag arrays, which together implement the

"cons pool" (outlined in figure 2).

Offset 1 2 3 4 5

Car FALSE 5 T_INTEGER

Cdr NIL 1 5

Tag ATOM_TAG

(#f) (5 #f) 5

[Fig.2: Node pool structure]

A node references another node by keeping the offset of that node in its car or cdr field. In the above

diagram, node 3 references node 1via its cdr field and node 5 via its car field. Node 1is (#f), node

Node 5 is the integer 5, so node 3 is (5 #f). Only node 5 has the atom tag set, because an integer

is an atom. (#F is a special value.)

EXTERN cell *Car,

*Cdr;

EXTERN char *Tag;

Vectors is the vector pool. Strings and vectors will be allocated here.

EXTERN cell *Vectors;

Free_list is the offset of the node on the top of the list of free nodes. Free nodes are chained

together via their cdr fields.Free_vecs points to the free region that is maintained at the end of the

vector pool.

EXTERN cell Free_list;

EXTERN cell Free_vecs;

Primitives is an array holding one PRIM struct for each primitive procedure in the entire system.

When adding primitives to the system, PRIM structs will be copied from local arrays to this array,

thereby assigning a unique index to each primitive procedure. This method allows to identify primitives

by their offset in the array.

Rationale: This approach was chosen, because storing pointers to PRIM structures directly in the

primitive procedure nodes caused trouble on computers using address space layout randomization

(ASLR) or position-independent code (PIC, PIE) when primitive nodes were written to an image

file. When the image file was read back into memory by a different instance of the interpreter, the

addresses of the structs could have changed, causing the interpreter to crash.
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In earlier versions of S9, this was prevented by making the address of the Primitives array

part of the magic header (causing the interpreter to fail at image load time), but the new approach is

more user-friendly.

EXTERN PRIM *Primitives;

Last_prim is the slot number (index) of the next primitive procedure to be added to Primitives.

Hence it is also equal to the number of primitives currently in the system.

Max_prims is the current size (number of slots) of Primitives. It will grow on demand.

EXTERN int Last_prim, Max_prims;

The following code contains the various registers of the virtual Scheme machine.Stack is the global

stack for storing intermediate results, call frames, outer environments, etc. Because the evaluator is

reentrant, the bottom of the stack is memorized inStack_bottom.State_stack is used to save

the interpreter state when evaluating nested expressions.

Tmp,Tmp_car, and Tmp_cdr protect objects from the garbage collector while allocating nodes.

Symbols is a list of all symbols that are known to the interpreter. Program is the program that

is currently evaluating. Environment is the environment that is currently in effect. Acc is the

accumulator -- a register that holds the result of a (partial) evaluation.

Apply_magic and Callcc_magic hold the indices of the apply and call/cc procedures in

the Primitives array. This is done because these procedures will have to be treated in a special

way by the evaluator.

New is part of a hack to work around the sub-optimal order of assignment evaluation of C. Because

car(x) may be evaluated before or after cons(a,b) in

car(x) = cons(a,b);

the allocator (cons()) may relocate the pool, so car(x) will write to an undefined memory region.

This is why we have to do it this way:

New = cons(a,b);

car(x) = New; /**sigh**/

EXTERN cell Stack,

Stack_bottom;

EXTERN cell State_stack;

EXTERN cell Tmp_car,

Tmp_cdr,

Tmp;

EXTERN cell Symbols;

EXTERN cell Program;

EXTERN cell Environment;

EXTERN cell Acc;

EXTERN cell Apply_magic, Callcc_magic;

EXTERN cell New;

Level is the number of nested parentheses during read, Load_level the number of nested

loads, and Displaying indicates whether we are displaying or writeing an object. The

code of display and write is almost identical, so we use this flag to run the same function in

different modes.
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EXTERN int Level;

EXTERN int Load_level;

EXTERN int Displaying;

These variables deal with error reporting. Called_procedures[] holds references to the most

recently called procedures. It works as a ring buffer.Proc_ptr points to the next free slot in the buffer.

Proc_max is the maximum number of references to store in the buffer (this value may not be larger

than MAX_CALL_TRACE).

File_list is a list of file names referenced by nested load.

Line_no is the current input line number in the file connected to the current input port. Open-

ing_line is the line number on which an outermost opening parenthesis is placed. It is used for error

reporting.

Printer_count and Printer_limit limit the number of characters written in error messages.

WhenPrinter_count becomes greater thanPrinter_limit, the printer will emit "..." and

stop printing.

EXTERN cell Called_procedures[MAX_CALL_TRACE];

EXTERN int Proc_ptr, Proc_max;

EXTERN cell File_list;

EXTERN int Line_no;

EXTERN int Opening_line;

EXTERN int Printer_count, Printer_limit;

Trace_list is a list of procedure names (symbols) that are currently being traced (see trace ^

[page 133]).

EXTERN cell Trace_list;

Ports[] is an array holding all I/O ports that may be used by S9fES. Opening a port allocates a slot

from this array. Unused ports are set to NULL. Each Port is associated with a corresponding slot in

Port_flags[], which holds the state of the port. (See USED_TAG,LOCK_TAG ^ [page 19].)

Input_port and Output_port are the ports that are currently being read and written respec-

tively (they are delivered in Scheme programs by (current-input-port) and (current-

output-port)).Error_port is connected to stderr. It is used to report errors in batch mode

(when Quiet_mode=1).

EXTERN FILE *Ports[MAX_PORTS];

EXTERN char Port_flags[MAX_PORTS];

EXTERN int Input_port,

Output_port,

Error_port;

Command_line is a copy of the arguments passed to a Scheme program via argv[]. Memo-

ry_limit_kn is the memory limit of the interpreter in kilo nodes.

When Quiet_mode is set to one, the interpreter will not print a banner or issue a prompt and it will

exit after catching an error. Error messages will go to stderr instead of stdout.

EXTERN char **Command_line;

EXTERN long Memory_limit_kn;

EXTERN int Quiet_mode;
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Error_flag will be set as soon as an error is caught by error(). Because this flag may be set

by the SIGINT handler, it has to be declared "volatile".

EXTERN volatile int Error_flag;

The evaluator uses the following variables to identify some frequently-used symbols in O(1) time.

/* Short cuts for accessing predefined symbols */

EXTERN cell S_arrow, S_else, S_extensions, S_latest,

S_library_path, S_loading, S_quasiquote,

S_quote, S_unquote, S_unquote_splicing;

EXTERN cell S_and, S_begin, S_cond, S_define,

S_define_syntax, S_if, S_lambda, S_or,

S_set_b;

Macros

Input/Output

These are just some shortcuts.nl() emits a newline sequence,reject() puts a character back to

an input port,read_c() reads a character from an input port, andread_c_ci() reads a character

and transforms it to lower case. All interpreter input goes through read_c().

/*

* I/O

*/

#define nl() pr("\n")

#define reject(c) ungetc(c, Ports[Input_port])

#define read_c() getc(Ports[Input_port])

#define read_c_ci() tolower(read_c())

Node Decomposition

These macros decompose the various atomic node types. Note that atoms are only atomic at the

Scheme level. Behind the scenes we have to access their individual (sub-atomic, as it were) parts.

These operations involve some ugly, low-level array wrestling, so they are abstracted as macros.

string() returns a pointer to the characters of a string atom.string_len() returns the number

of characters in a string atom (including the trailing NUL character!). Note that a string may contain

NULs at any position, so we extract the length from the vector pool.

symbol_name() extracts the name of a symbol and symbol_len() the length of the name.

These are in fact the same as the corresponding string_ macros.

vector() extracts a pointer to the elements stored in a vector. The elements are stored in an array

of cells. vector_link() and vector_index() extract values of internal fields of a vector

(see below). vector_len() computes the actual length of a vector as seen by Scheme. vec-

tor_size() converts the size of a vector in bytes into its size in cells (including meta information).
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port_no() extracts the port number of a port, i.e, its offset into thePorts[] andPort_flags[]

arrays.

char_value() returns the character stored in a Scheme "char".

/*

* Access to fields of atoms

*/

#define string(n) ((char *) &Vectors[Cdr[n]])

#define string_len(n) (Vectors[Cdr[n] - 1])

#define symbol_name(n) (string(n))

#define symbol_len(n) (string_len(n))

#define vector(n) (&Vectors[Cdr[n]])

#define vector_link(n) (Vectors[Cdr[n] - 3])

#define vector_index(n) (Vectors[Cdr[n] - 2])

#define vector_size(k) (((k) + sizeof(cell)-1) / sizeof(cell) + 3)

#define vector_len(n) (vector_size(string_len(n)) - 3)

#define port_no(n) (cadr(n))

#define char_value(n) (cadr(n))

Vector Representation

A Scheme vector is represented internally as an array of cells with an additional header. The following

constants are used to access the header fields.

RAW_VECTOR_LINK is the "link field" of a vector. It points back to the node that points to the (data

field) of the array in the vector pool (see figure 3).

Car Cdr Tag

Node Pool: T_VECTOR Cdr VECTOR_TAG

Vector Pool: Link Index Size Data ...

[Fig.3: Vector back link]

The vector back link is required by the garbage collector. When the vector pool is compacted, vector

data may move, so the cdr field of the node representing a vector may have to be updated in order to

reflect the new location of the vector data.

RAW_VECTOR_INDEX is also used in garbage collection. In the mark phase it stores the offset of the

vector slot that is currently being marked. It is required for constant-space marking. (See the Memory

Management section [page 38] for details.)

RAW_VECTOR_SIZE holds the size of a vector in bytes. This is done because strings are also stored

in vectors and computing the length of a string is done more frequently than computing the length of

a vector.

Note that for a string, the RAW_VECTOR_SIZE may be smaller than the actual size of the vector

containing the string. This is because vector sizes are always a multiple of the size of a cell, but string

lengths are not limited in such a way.Thevector_size()macro converts a RAW_VECTOR_SIZE

into an actual vector size in cells.
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RAW_VECTOR_DATA, finally,holds the first vector element.Subsequent vector elements follow imme-

diately.

/*

* Internal vector representation

*/

#define RAW_VECTOR_LINK 0

#define RAW_VECTOR_INDEX 1

#define RAW_VECTOR_SIZE 2

#define RAW_VECTOR_DATA 3

Real Number Representation

A S9fES real number (floating point number) consists of four or more nodes holding its

-- type

-- flags

-- exponent

-- (variable-length) mantissa

All of its nodes have the atom flag set, because their car fields carry values rather than references to

other nodes (see figure 4).

T_REAL Cdr Flags Cdr Exp. Cdr Mantissa

[Fig.4: Real number representation]

The mantissa is a fixed-length sequence of bignum integer segments, which are explained in detail in

the section about bignum arithmetics.

The x_real_flags(), x_real_exponent(), and x_real_mantissa() macros extract

the individual parts of a real number. There is only one flag, REAL_NEGATIVE, which -- when set --

indicates that the number is negative. The x_real_negative_flag() macro tests this flag.

/*

* Flags and structure of real numbers

*/

#define x_real_flags(x) (cadr(x))

#define x_real_exponent(x) (caddr(x))

#define x_real_mantissa(x) (cdddr(x))

#define REAL_NEGATIVE 0x01

#define x_real_negative_flag(x) (x_real_flags(x) & REAL_NEGATIVE)

Nested Lists

These are the usual abbreviations for nested car and cdr. We define only those that are actually

used in the code.
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/*

* Nested lists

*/

#define car(x) (Car[x])

#define cdr(x) (Cdr[x])

#define caar(x) (Car[Car[x]])

#define cadr(x) (Car[Cdr[x]])

#define cdar(x) (Cdr[Car[x]])

#define cddr(x) (Cdr[Cdr[x]])

#define caaar(x) (Car[Car[Car[x]]])

#define caadr(x) (Car[Car[Cdr[x]]])

#define cadar(x) (Car[Cdr[Car[x]]])

#define caddr(x) (Car[Cdr[Cdr[x]]])

#define cdaar(x) (Cdr[Car[Car[x]]])

#define cdadr(x) (Cdr[Car[Cdr[x]]])

#define cddar(x) (Cdr[Cdr[Car[x]]])

#define cdddr(x) (Cdr[Cdr[Cdr[x]]])

#define caaddr(x) (Car[Car[Cdr[Cdr[x]]]])

#define caddar(x) (Car[Cdr[Cdr[Car[x]]]])

#define cadadr(x) (Car[Cdr[Car[Cdr[x]]]])

#define cadddr(x) (Car[Cdr[Cdr[Cdr[x]]]])

#define cddadr(x) (Cdr[Cdr[Car[Cdr[x]]]])

#define cdddar(x) (Cdr[Cdr[Cdr[Car[x]]]])

#define cddddr(x) (Cdr[Cdr[Cdr[Cdr[x]]]])

Type Predicates

Most of the following type predicates test for the corresponding Scheme data types. eof_p() tests

for the EOF object,undefined_p() tests for an undefined value, which is used, for instance, as the

value of undefined symbols. unspecific_p() tests for the (sic!) unspecific value (as returned by

set! and friends).

constant_p() checks whether an object is immutable. primitive_p() and continua-

tion_p() are used internally only. At the Scheme level, the types they test for are procedures.

special_p() checks whether a given symbol introduces a special form (e.g.: quote, if,

define).syntax_p() tests whether an object is a macro.

atom_p() returns truth, if its argument is an atom (has either theATOM_TAG or VECTOR_TAG set).

It also returns truth for special objects (like #t or the EOF), which are also atomic from the Scheme

point of view.

auto_quoting_p() tests whether an object is self-quoting.We say that all atoms are self-quoting,

which is a lie,but simplifies things a lot. Its only evil side effect is that is makes() and unquoted vectors

valid Scheme expressions, which they are not.

/*

* Type predicates

*/

#define eof_p(n) ((n) == END_OF_FILE)

#define undefined_p(n) ((n) == UNDEFINED)

#define unspecific_p(n) ((n) == UNSPECIFIC)

29



#define boolean_p(n) ((n) == TRUE || (n) == FALSE)

#define constant_p(n) (!special_value_p(n) && (Tag[n] & CONST_TAG))

#define integer_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && Car[n] == T_INTEGER)

#define number_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && \

(Car[n] == T_REAL || Car[n] == T_INTEGER))

#define primitive_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && Car[n] == T_PRIMITIVE)

#define procedure_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && Car[n] == T_PROCEDURE)

#define continuation_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && \

Car[n] == T_CONTINUATION)

#define real_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && Car[n] == T_REAL)

#define special_p(n) ((n) == S_quote || \

(n) == S_begin || \

(n) == S_if || \

(n) == S_cond || \

(n) == S_and || \

(n) == S_or || \

(n) == S_lambda || \

(n) == S_set_b || \

(n) == S_define || \

(n) == S_define_syntax)

#define char_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && Car[n] == T_CHAR)

#define syntax_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && Car[n] == T_SYNTAX)

#define input_port_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && (Tag[n] & PORT_TAG) \

&& Car[n] == T_INPUT_PORT)

#define output_port_p(n) \

(!special_value_p(n) && (Tag[n] & ATOM_TAG) && (Tag[n] & PORT_TAG) \

&& Car[n] == T_OUTPUT_PORT)

#define symbol_p(n) \

(!special_value_p(n) && (Tag[n] & VECTOR_TAG) && Car[n] == T_SYMBOL)

#define vector_p(n) \

(!special_value_p(n) && (Tag[n] & VECTOR_TAG) && Car[n] == T_VECTOR)

#define string_p(n) \

(!special_value_p(n) && (Tag[n] & VECTOR_TAG) && Car[n] == T_STRING)

#define atom_p(n) \

(special_value_p(n) || (Tag[n] & ATOM_TAG) || (Tag[n] & VECTOR_TAG))

#define auto_quoting_p(n) atom_p(n)

#define pair_p(x) (!atom_p(x))

The Rib Cage

A "rib" is an argument list in the process of creation. At any point in the evaluation of a program, the
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evaluator state contains a set of ribs (due to nested procedure application), which may be thought of

as a "rib cage".

The S9fES rib structure is outlined in figure 5.

Car Cdr Car Cdr Car Cdr Source

Args Append Result

args arguments to be evaluated.

append slot where evaluated arguments will be appended

result evaluated arguments

source the complete source expression

[Fig.5: Rib structure]

The source field is stored in the cdr part of the last cons in order to minimize consing during evalu-

ation.

The rib_args(),rib_append(),rib_result(), and rib_source() macros access the

individual parts of a rib. The append field of a rib basically caches the last element of the result list so

that evaluated arguments can be appended in O(1) time. (See also: append pointer [page 50])

Note: Because adding elements to a rib is a destructive operation, this optimization breaks call/cc

with multiple arguments in the same lambda. E.g., the following code will break the evaluator:

(let ((k (call/cc (lambda (k) k)))

(x #t))

...)

This happens because adding the value #t to the rib will mutate the binding previously captured by

call/cc, so invoking k later will re-establish the wrong state.

Rationale: The author of S9fES thinks that overall performance is more important that general

call/cc. If you think otherwise, this is where to fix it.

/*

* Rib structure

*/

#define rib_args(x) (car(x))

#define rib_append(x) (cadr(x))

#define rib_result(x) (caddr(x))

#define rib_source(x) (cdddr(x))

Allocators

Allocators have to be fast, so we implement them as macros. These macros are wrappers around the

cons3() procedure, which is the principal node allocator.

cons() allocates a new cons cell. new_atom() allocates a new atom. save() is used to save

objects on the global stack. save_state() saves the evaluator state on the state stack. It uses

cons3() with ATOM_TAG, because the object it saves is not a node, but a C int.
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/*

* Allocators

*/

#define cons(pa, pd) cons3((pa), (pd), 0)

#define new_atom(pa, pd) cons3((pa), (pd), ATOM_TAG)

#define save(n) (Stack = cons((n), Stack))

#define save_state(v) (State_stack = cons3((v), State_stack, ATOM_TAG))

Arithmetics Primitives

These arithmetic functions are so low-level that they are best written as macros.

x_bignum_negative_p(), x_bignum_positive_p() and x_bignum_zero_p() test

whether a bignum integer is negative, positive, or zero, respectively.

x_real_negative_p(), x_real_positive_p(), and real_zero_p() are the corre-

sponding real number operations. All of these macros expect the correct type, e.g. you cannot pass an

integer to x_real_zero_p().

x_real_negate() creates a fresh real number with the inverse prefix of the one passed to it.

/*

* Bignum arithmetics

*/

#define x_bignum_negative_p(a) ((cadr(a)) < 0)

#define x_bignum_zero_p(a) ((cadr(a) == 0) && (cddr(a)) == NIL)

#define x_bignum_positive_p(a) \

(!x_bignum_negative_p(a) && !x_bignum_zero_p(a))

/*

* Real-number arithmetics

*/

#define x_real_zero_p(x) \

(car(x_real_mantissa(x)) == 0 && cdr(x_real_mantissa(x)) == NIL)

#define x_real_negative_p(x) \

(x_real_negative_flag(x) && !x_real_zero_p(x))

#define x_real_positive_p(x) \

(!x_real_negative_flag(x) && !x_real_zero_p(x))

#define x_real_negate(a) \

make_real(x_real_flags(a) & REAL_NEGATIVE? \

x_real_flags(a) & ~REAL_NEGATIVE: \

x_real_flags(a) | REAL_NEGATIVE, \

x_real_exponent(a), x_real_mantissa(a))
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Prototypes of Public Functions

The below functions are used by some S9fES extensions. Hence their prototypes are listed here.

/*

* Prototypes

*/

void add_primitives(char *name, PRIM *p);

cell symbol_ref(char *s);

cell cons3(cell pcar, cell pcdr, int ptag);

int new_port(void);

char *copy_string(char *s);

cell error(char *msg, cell expr);

void fatal(char *msg);

cell integer_value(char *src, cell x);

int length(cell x);

cell make_char(int c);

cell make_integer(cell i);

cell make_port(int portno, cell type);

cell make_string(char *s, int k);

cell unsave(int k);

Interpreter Core (C Part)

/*

* Scheme 9 from Empty Space

* By Nils M Holm, 2007-2014

* Placed in the Public Domain

*/

Miscellanea

First, some compile-time options. If you define NO_SIGNALS, the POSIX signal handlers will not be

compiled in. In this case, sending the S9 process a SIGINT or SIGQUIT signal will terminate the

process. When the option is undefined, SIGINT will return to the read-eval-print loop (REPL) and

SIGQUIT will shut down the interpreter.

Note that defining NO_ options is normally a bad idea due to double negation ("not defining

NO_SIGNALS enables signals"), but in this case actually enabling the option will probably be a rare

occasion and hence the positive case should be the default.

BITS_PER_WORD_64 will make use of 64-bit integers on 64-bit systems. Not setting this option on

64-bit systems will only hurt performance, but will still work. REALNUM enables floating point arith-

metics. We will not bother with floating point hardware, but implement reals on top of bignum integers.

/*

* Use -DNO_SIGNALS to disable POSIX signal handlers.
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* Use -DBITS_PER_WORD_64 on 64-bit systems.

* Use -DREALNUM to enable real number support

* (also add "s9-real.scm" to the heap image).

*/

VERSION is the version tag as displayed by the -v command line option. It is also used in image

headers to make sure that each image can only be loaded by the interpreter version that created it.

We define EXTERN here to create the globals in the Header section [page 15].EXTENSIONS is a list

of initializer calls for extensions. When no extensions have been passed to us on the command line,

we use an empty list of initializers.

#define VERSION "2014-07-21"

#define EXTERN

#include "s9.h"

#undef EXTERN

#ifndef EXTENSIONS

#define EXTENSIONS

#endif

Garbage collection is silent by default.TheGC_root[] array contains the starting points for the mark

phase of the garbage collector, i.e. all nodes pointed to by these variables will be marked "used".

int Verbose_GC = 0;

cell *GC_root[] = { &Program, &Symbols, &Environment, &Tmp,

&Tmp_car, &Tmp_cdr, &Stack, &Stack_bottom,

&State_stack, &Acc, &Trace_list, &File_list,

NULL };

Counting

The counter structure is used for counting things during evaluation. We cannot use bignum

arithmetics here, because doing so might invoke the counter (which would then invoke bignums, which

... you get the idea).

Run_stats enables counting in general while Cons_stats counts the allocation of "cons" cells.

We count interesting things such as reductions steps, cons cells allocated, total storage allocated, and

garbage collections performed.

Storage is measured in the rather abstract unit of "nodes", which is explained in the Header section

[page 22].

/*

* Counting

*/

int Run_stats, Cons_stats;

struct counter {

int n, n1k, n1m, n1g, n1t;

};
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struct counter Reductions,

Conses,

Nodes,

Collections;

The reset_counter() function sets a counter to zero, and count() increments the given

counter. When a counter overflows, we abort the computation in progress.

void reset_counter(struct counter *c) {

c->n = 0;

c->n1k = 0;

c->n1m = 0;

c->n1g = 0;

c->n1t = 0;

}

void count(struct counter *c) {

char msg[] = "statistics counter overflow";

c->n++;

if (c->n >= 1000) {

c->n -= 1000;

c->n1k++;

if (c->n1k >= 1000) {

c->n1k -= 1000;

c->n1m++;

if (c->n1m >= 1000) {

c->n1m -= 1000;

c->n1g++;

if (c->n1g >= 1000) {

c->n1t -= 1000;

c->n1t++;

if (c->n1t >= 1000) {

error(msg, NOEXPR);

}

}

}

}

}

}

Thecounter_to_list() function turns a counter into a list of five integers resembling the trillions,

billions, millions, thousands, and ones of its value:

(trillions billions millions thousands ones)

Turning this representation into a bignum is left to some Scheme code.

cell counter_to_list(struct counter *c) {

cell n, m;

n = make_integer(c->n);

n = cons(n, NIL);

save(n);

m = make_integer(c->n1k);

n = cons(m, n);

car(Stack) = n;

m = make_integer(c->n1m);

n = cons(m, n);

car(Stack) = n;
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m = make_integer(c->n1g);

n = cons(m, n);

car(Stack) = n;

m = make_integer(c->n1t);

n = cons(m, n);

unsave(1);

return n;

}

Output

These are raw output functions. All Scheme output will be sent through this interface.The pr_raw()

function emits the first k characters of the string s. The Printer_limit and Printer_count

variables are used to limit the number of characters printed in error messages. When writing a newline

to the default output port, we auto-flush the output to generate line-by-line output on terminals. (In case

the default port is connected to a FILE that is not line-buffered.)

cell error(char *msg, cell expr);

void flush(void) {

fflush(Ports[Output_port]);

}

void pr_raw(char *s, int k) {

if (Printer_limit && Printer_count > Printer_limit) {

if (Printer_limit > 0)

fwrite("...", 1, 3, Ports[Output_port]);

Printer_limit = -1;

return;

}

fwrite(s, 1, k, Ports[Output_port]);

if (Output_port == 1 && s[k-1] == ’\n’)

flush();

Printer_count += k;

}

void pr(char *s) {

if (Ports[Output_port] == NULL)

error("output port is not open", NOEXPR);

else

pr_raw(s, strlen(s));

}

Error Handling

These routines deal with error conditions. The bye() function is the principal exit point of the inter-

preter process. It resets the TTY to a sane state in case curses support is compiled in.reset_tty()

resets the TTY state when the CURSES_RESET compile-time option is defined.

/*

* Error Handling

*/
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void reset_tty(void) {

#ifdef CURSES_RESET

cell pp_curs_endwin(cell);

pp_curs_endwin(NIL);

#endif

}

void bye(int n) {

reset_tty();

exit(n);

}

The print_error_form() function is used to print the form or object that caused an error. It

limits the number of characters to print in order to avoid error messages spanning multiple lines (or

pages,or even infinite output).print_call_trace() prints the names of the most recently called

procedures.Proc_max is the maximum number of procedures to print.

void print_form(cell n);

void print_error_form(cell n) {

Printer_limit = 50;

Printer_count = 0;

print_form(n);

Printer_limit = 0;

}

void print_calltrace(void) {

int i, j;

for (i=0; i<Proc_max; i++)

if (Called_procedures[i] != NIL)

break;

if (i == Proc_max)

return;

pr("call trace:");

i = Proc_ptr;

for (j=0; j<Proc_max; j++) {

if (i >= Proc_max)

i = 0;

if (Called_procedures[i] != NIL) {

pr(" ");

print_form(Called_procedures[i]);

}

i++;

}

nl();

}

The error() routine is called whenever the interpreter catches an error. It prints the message msg

and the optional Scheme object expr .Error_flag is used to signal the interpreter that an error has

occurred. When it is set,error() will not report any subsequent errors until the flag is reset, so only

one error is reported per evaluation. When the interpreter works in quiet mode (Quiet_mode is set),

error() will terminate the interpreter. When the NOEXPR constant is passed to error() in the

expr argument, it will not print any Scheme object after the message. The constant indicates that the

error occurred in no (particular) expression.

void reset_tty(void);
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cell error(char *msg, cell expr) {

int oport;

char buf[100];

if (Error_flag)

return UNSPECIFIC;

oport = Output_port;

Output_port = Quiet_mode? 2: 1;

Error_flag = 1;

pr("error: ");

if (box_value(S_loading) == TRUE) {

if (File_list != NIL) {

print_form(car(File_list));

pr(": ");

}

sprintf(buf, "%d: ", Line_no);

pr(buf);

}

pr(msg);

if (expr != NOEXPR) {

pr(": ");

Error_flag = 0;

print_error_form(expr);

Error_flag = 1;

}

nl();

print_calltrace();

Output_port = oport;

if (Quiet_mode)

bye(1);

return UNSPECIFIC;

}

fatal() is called whenever the interpreter reaches a state that does not allow it to continue

operation. It then prints an error message (even if Error_flag is already set) and exits.

void fatal(char *msg) {

Output_port = Quiet_mode? 2: 1;

pr("fatal ");

Error_flag = 0;

error(msg, NOEXPR);

bye(2);

}

Memory Management

Before we can do anything useful, we need a garbage collector (GC). The GC, of course,

needs a pool of free nodes and vector cells to operate on. So we allocate those pools first. The

new_cons_segment() function adds a new "memory segment" to the node pool. It is called

whenever the pool becomes too small. The initial pool size is zero, so the function also allocates the

initial pool.

Each node consists of a Car,Cdr, and Tag element, so the total size of a node is

2 * sizeof(cell) + sizeof(char)
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The size of a segment to be added to the pool is kept in the Cons_segment_size variable. The

value of this variable grows by a factor of 3/2 after each allocation, so the pool grows exponentially. At

any point its current size is the sum over

INITIAL_SEGMENT_SIZE * 1.5(i-1)

where i ranges from 1to the number of prior new_cons_segment() calls.

/*

* Memory Management

*/

void new_cons_segment(void) {

Car = realloc(Car, sizeof(cell) * (Cons_pool_size+Cons_segment_size));

Cdr = realloc(Cdr, sizeof(cell) * (Cons_pool_size+Cons_segment_size));

Tag = realloc(Tag, Cons_pool_size + Cons_segment_size);

if (Car == NULL || Cdr == NULL || Tag == NULL)

fatal("new_cons_segment: out of physical memory");

memset(&car(Cons_pool_size), 0, Cons_segment_size * sizeof(cell));

memset(&cdr(Cons_pool_size), 0, Cons_segment_size * sizeof(cell));

memset(&Tag[Cons_pool_size], 0, Cons_segment_size);

Cons_pool_size += Cons_segment_size;

Cons_segment_size = Cons_segment_size * 3 / 2;

}

new_vec_segment() allocates segments of the vector pool in the same way as

new_cons_segment() allocates segments of the node pool.

void new_vec_segment(void) {

Vectors = realloc(Vectors, sizeof(cell) *

(Vec_pool_size + Vec_segment_size));

if (Vectors == NULL)

fatal("out of physical memory");

memset(&Vectors[Vec_pool_size], 0, Vec_segment_size * sizeof(cell));

Vec_pool_size += Vec_segment_size;

Vec_segment_size = Vec_segment_size * 3 / 2;

}

The S9fES garbage collector uses a constant-space mark-and-sweep method that is based on the

Deutsch/Schorr/Waite (DSW) pointer reversal algorithm. A constant-space GC never allocates any

additional storage outside of the tree traversed by it. It stores return information for getting back to

previously visited nodes in the nodes themselves by reversing pointers to child nodes to make them

point to parent nodes.This will be explained in detail in the following.S9fES extends the DSW algorithm

to handle vectors, too.

A mark-and-sweep collector works in two phases, the "mark" phase and the "sweep" phase. The mark

phase traverses trees of nodes that start at specific points and marks all nodes of those trees as

"used". S9fES keeps these starting points in the GC_root[] array. Typical starting points include, for

instance, the symbol table, the current environment, and the stack.

In the sweep phase, the collector recycles all nodes that were not marked in the mark phase by adding

them to the free list. Nodes that cannot be reached from the GC roots can never be reached by any

program code, either, so the collector has proven that they can be recycled safely.

The mark phase of the S9fES collector also marks accessible I/O ports as used and its sweep phase

closes ports that are no longer accessible.
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Themark() function implements the mark phase of the DSW GC. It consists of a finite state machine

(FSM) that traverses a tree rooted at the node n in depth-first order, thereby marking all of its nodes

(and associated I/O ports and vectors) as used.

The FSM uses three states (0,1,2) which are represented by the STATE_TAG and MARK_TAG bits

of the Tag fields of the traversed nodes. When entering an unvisited node, both flags will be zero and

when leaving a node, the MARK_TAG will be set, thereby indicating that the node is still in use. When

visiting a node with the MARK_TAG bit set, the GC will simply leave it alone and return to the parent.

The following figures will illustrate how the FSM uses the state of each node to traverse a tree in

constant space. The variable parent is used to keep track of the parent of the current node.

N Parent NIL

M0 S0 Car Cdr

M0 S0 Car Cdr M0 S0 Car Cdr

[Fig.6: GC state 0]

In GC state 0 (fig.6), the tree of three nodes is completely unvisited. All nodes are marked unused

(M=0) and there is no parent, because n points to the root of the tree.

N Parent NIL

M1 S1 Car Cdr

M0 S0 Car Cdr M0 S0 Car Cdr

[Fig.7: GC state 1]

In state 1(fig.7), the root of the tree has been marked (indicated by gray background). In addition its S

flag has been set to indicate that the traversal of that node is not yet complete. N now points to the car

child of the old n and parent points to the parent of (the new) n. The car field of the old n points back

to the parent of parent, which is NIL at this point. The car field of the currently visited node is used for

temporary storage. Its value will be restored from n later.

N Parent NIL

M1 S0 Car Cdr

M1 S0 Car Cdr M0 S0 Car Cdr

[Fig.8: GC state 2]

In state 2 (fig.8), the original value of the car field of the root node has been restored from n. N now

points to the cdr child of the root node, the cdr field of the root node points to the parent of parent,

and parent points to the parent of n. The S flag of the root node is now cleared to indicate that it was

completely visited. This is not entirely true, though, because the FSM is still processing its cdr part.
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