correlation

An indicator for some form of relationship between two *random* variables. Variables that are not correlated are said to be uncorrelated or independent (\rightarrow independence). Formally, the correlation coefficient is used to determine the degree of correlation of two variables. Variables are rarely completely uncorrelated, but the correlation can be very weak. A visual hint about the correlation of two variables can be obtained by creating a *scatter plot* of the variables. When the value of one variable grows smaller as the value of the other variable grows larger, this is called "negative correlation" or *anticorrelation*.

$X \sim U(a, b)$	
	$\int_0 \text{if } x < a$
PDF	$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & 0 \end{cases}$
	$\begin{bmatrix} 0 & if x > b \end{bmatrix}$
	$\int_0 \text{if } x < a$
CDF	$F(x) = \begin{cases} \frac{x-a}{b-a} & \text{if } a \le x \le b \\ 1 & \text{if } x > b \end{cases}$
	1 if x > b
Statistic	$x \in \mathbf{R}$: outcome
Parameters	$a, b \in \mathbf{R}; a \le b$: range
μ	$\frac{a+b}{2}$
σ^2	$\frac{(b-a)^2}{12}$
Skewness (γ_1)	0

Figure **CUD:** continuous uniform distribution