decision tree

A tree diagram with *probabilities* and *conditional probabilities* on its edges. See figure DCT. The leaf nodes usually contain conclusions. In the figure, they list joint probabilities.

![Decision Tree Diagram](image)

Figure DCT: decision tree

The figure shows a decision tree with two variables and hence two levels. The first level, originating from the root node to the left, determines whether or not the *event* \(A \) occurs. When the event occurs, the \(P(A) \) branch is followed, else the \(P(\bar{A}) \) branch (\(\rightarrow \) complement) is taken. At the next level \(A \) versus \(\bar{A} \) is already known, so it lists the probabilities of \(P(B|A) \) ("B given A") and \(P(B|\bar{A}) \) in the upper branch and \(P(\bar{B}|A) \) and \(P(\bar{B}|\bar{A}) \) in the lower one.

At each vertex, the probability of all branches sums up to \(p = 1 \). For instance, \(P(A) + P(\bar{A}) = 1 \) and \(P(B|A) + P(\bar{B}|A) = 1 \). The joint probabilities (like \(P(A \cap B) \)) are computed by multiplying the probabilities that lead to their respective leaf vertexes (e.g. \(P(A \cap B) = P(A) \cdot P(B|A) \)).

Decision trees are useful for visualizing conditional probability and *reverse conditional probability*.