
PRACTICAL
COMPILER

CONSTRUCTION
Nils M Holm

Contents
Preface (First Edition) 7

Preface 11

Acknowledg ements 13

Part I — Introduction

Compilers 17

How Does a Compiler Wor k? 19

Phases of Compilation 21

A Simplified Model 28

The Peculiarities of C 31

Rules of the Game 35

The Source Language 35

The Object Language 38

The Runtime Librar y 39

Part II — The Tour

Definitions and Data Structures 43

Definitions 43

Global Data 50

Function Prototypes 56

Utility Functions 59

Error Handling 63

Lexical Analysis 67

A Brief Theory of Scanning 77

The Implementation of the Scanner 81

Symbol Table Management 91

Syntactic and Semantic Analysis 103

A Brief Theory of Parsing 104

Mapping Grammars to Parsers 109

Expression Parsing 114

2 Contents

Constant Expression Parsing 147

Statement Parsing 152

Declaration Parsing 169

Preprocessing 189

Code Generation 197

A Brief Theory of Code Generation 197

The Code Generator 200

Fr amework 204

Load Operations 206

Binar y Operators 207

Unar y Operators 214

Jumps and Function Calls 216

Data Definitions 219

Increment Operators 221

Switch Table Generation 226

Store Operations 227

Rvalue Computation 230

Targ et Description 233

The 386 Target 236

Fr amework 237

Load Operations 238

Stack Operations 241

Binar y Operations 241

Unar y Operations 245

Increment Operations 246

Jumps and Branches 252

Store Operations 253

Functions and Function Calls 255

Data Definitions 256

The Compiler Controller 259

Contents 3

Part III — The Runtime Environment

The Runtime Startup Module 273

The System Calls 278

Header Files 289

The System Call Header 289

The Setjmp Header 290

The Signal Header 290

The Runtime Library 293

Librar y Initialization 293

Standard I/O 294

The stdio.h Header 295

Required Stdio Functions 301

Utility Librar y 330

The stdlib.h Header 330

Required Stdlib Functions 331

Str ing Librar y 340

The string.h Header 340

Required String Functions 341

Character Types 345

The ctype.h Header 345

The Ctype Functions 345

The errno.h Header 347

Part IV — Beyond SubC

Code Synthesis 351

Instr uction Queuing 352

CISC versus RISC 362

Compar isons and Conditional Jumps 363

Register Allocation 365

Cyclic Register Allocation 371

Optimization 375

4 Contents

Peephole Optimization 375

Expression Rewr iting 379

Constant Expression Folding 385

Strength Reduction 388

Common Subexpression Elimination 393

Emitting Code from an AST 399

Part V — Conclusion

Bootstrapping a Compiler 403

Design 403

Implementation 404

Testing 407

Having Some Fun 409

Appendix

Where Do We Go from Here? 415

Piece of Cake 415

This May Hur t a Bit 416

Br ing ’Em On! 418

(Sub)C Primer 421

Data Objects and Declarations 421

Void Pointers 424

Expressions 425

Pointer Arithmetics 428

Statements 429

Functions 432

Prototypes and External Declarations 433

Preprocessor 434

Librar y Functions 436

386 Assembly Primer 437

Registers 437

Assembler Syntax 439

Contents 5

Assembler Directives 439

Sample Program 440

Addressing Modes 442

Register 442

Immediate 442

Memor y 442

Indirect 443

Instr uction Summar y 444

Move Instr uctions 444

Ar ithmetic Instr uctions 445

Branch and Call Instructions 447

List of Figures 449

Bibliography 451

Index 453

7

Preface (First Edition)
A lot of time has passed since the publication of my previous

compiler textbook, Lightweight Compiler Techniques (LCT), in

1996. I had sold some spiral-bound copies of the book on my own

back then and later published a nice soft-cover edition on

Lulu.com in 2006. To my sur prise the paperback sold more copies

than I had sold when the book was first published, and a few

people even asked me if I planned to finish the final chapter on

code generation and optimization. However, I nev er found the

motivation to do so. Until now.

Instead of polishing and updating LCT, though, I decided to create

an entirely new wor k that is only loosely based on it. As you

probably know, sometimes it is easier to toss all your code to the

bin and start from scratch. So while this book is basically an

updated, extended, improved, greater, better, funnier edition of

LCT, it differs from it in several substantial points:

Instead of the T3X language, which never caught on anyway, it

uses the wide-spread C programming language (ANSI C, C89) as

both the implementation language and the source language of the

compiler being implemented in the course of the text.

It includes much more theory than LCT, thereby shifting the

perspective to a more abstract view and making the wor k more

general and less tightly bound to the source language. How ever,

all theory is laid out in simple prose and immediately translated to

practical examples, so no prior knowledge in the field is required.

The main part of the book contains the complete code of the

compiler, including its code generator, down to the level of the

emitted assembly language instructions. It also describes the

interface to the operating system and the runtime librar y—at least

those parts that are needed to implement the compiler itself, which

is quite a bit!

Then there is a self-contained part dealing with code synthesis

and optimization. The approaches discussed here are mostly

8 Preface (First Edition)

taken from LCT, but explained in greater detail and illustrated with

lots of diagrams and tables. This part covers topics like abstract

program rewriting, register allocation, machine-dependent

peephole optimization and common subexpression elimination.

The final part of the book describes the bootstrapping process that

is inherent in the creation of a compiler from the scratch, i.e. it

explains where to start and how to proceed when creating a new

compiler for a new or an existing programming language.

The intended audience of this book is ‘‘programmers who are

interested in writing a compiler’’. Familiar ity with a programming

language is required, wor king knowledge of the C language is

helpful, but a C pr imer is included in the appendix for the brave of

hear t. This book is intended as a practical ‘‘first contact’’ to the

world of compiler-wr iting. It covers theory where necessary or

helpful, explains the terminology of compilers, and then goes

straight to the gory details.

The book is not a classic teaching book. It does not take a break

and requires you to pace yourself. Be prepared to read it at least

twice: once concentrating on the prose and another time

concentrating on the code. The goal of the book is to bring you to

a point where you can write your own real-wor ld compiler with all

the bells and whistles.

The code spread out in the book is a compiler for a subset of the

C programming language as described in the second edition of the

book The C Programming Language (TCPL2) by Brian W.

Kernighan and Dennis M. Ritchie. The compiler targets the plain

386 processor without any extensions. It requires the GNU

386 assembler to compile its output. Its runtime environment has

been designed for the FreeBSD1 operating system, but I suspect

that it will also compile on Linux—or should be easy to port, at

least.

The complete machine-readable source code to all versions of the

compiler can be found at http://www.t3x.org.

1 See http://www.freebsd.org.

Preface (First Edition) 9

All the code in this book is in the public domain, so you can do

whatever you please with it: compile it, use it, extend it, give it to

your friends, sell it, whatever makes you happy.

Nils M Holm

March 2012

11

Preface
SubC and Practical Compiler Construction were an unexpected

success. It is probably still the best-selling one of my books, and

people have done interesting things with it, which is probably the

greatest praise that the wor k of a human being can attract. Since

the publication of the first edition, the SubC compiler has been

por ted to Linux, OpenBSD, Mac OS (Darwin), Windows, and DOS.

It also supports the ARMv6, 8086, and x86-64 CPUs now, and

some of the optimizations explained in this book have been added.

The code of the new compiler, how ever, has evolved substantially

and is now quite a bit more complex than the code described

initially.

This text still explains the original SubC compiler as it first

appeared in the first edition of the book. However, there are some

differences. All bugs that have been discovered since the

publication of the first edition have been fixed. The dependency on

the host system’s standard C librar y has been removed. The

system call interface has been made more Unix-like in order to

increase the compatibility with existing code.

Many lessons have been learned during the further development

of SubC. One is that the C language is really complex, and writing

a compiler for even a tiny subset of C is a major undertaking with

many small details waiting to be overlooked. This is why the

second edition still discusses the original SubC compiler instead

of one of its descendants. Another lesson is that emulating

signal() is probably not wor th the pain that it inflicts, so it has

been removed from this edition. (You can still have it by linking

against the host system’s C librar y.)

This book has been available in PDF for mat only since 2016,

because the print master no longer adhered to evolving standards.

This was mostly caused by typesetting the book in TeX, which is

simply to complicated for my little brain (i.e. this is not a fault of

TeX, but a limitation of my understanding of it). So the obvious

remedy was to change the typesetting to TROFF, which has never

let me down in all the decades of writing. I started this endeavor in

12 Preface

2017, but then lost interest along the way. How ever, people kept

asking about the print edition and so I eventually decided to finish

the wor k on the second edition. It was a much greater effor t than

or iginally expected, but I think it was wor th it. The second edition

is a better book than the first one and, as of now, the book is back

in print!

Nils M Holm

May 2022

17

Compilers
Tr aditionally, most of us probably understand a compiler as a

stand-alone program that reads source code written in a for mal

language and generates an executable program for a specific

computer system. Indeed this is how most compilers wor k, ev en

today. In the past it has been common to refer to interactive

programming language implementations as ‘‘inter preters’’. Even

the distinction between ‘‘inter preted’’ and ‘‘compiled’’ languages

has been made. These boundaries are highly artificial, though.

Many languages that have been referred to as interpreted

languages in the past have gotten compilers long ago. BASIC and

LISP, for instance, both of which were first implemented as

‘‘inter preters’’, soon evolved into implementations that generated

native machine code. Most modern LISP systems compile code to

machine code behind the scenes, even in interactive mode. In the

age of just-in-time compilation, interactive program execution is no

longer an evidence for what we commonly call ‘‘inter pretation’’.

What is ‘‘program inter pretation’’ anyway? It is nothing but the

process of perfor ming cer tain tasks based on the statements

wr itten down in a for mal program. Does it really matter whether

this interpretation is perfor med by a human being, by another

program on the same or a different machine, or by a program that

happens to be cast in silicon (a.k.a. a CPU)?

I think it is time to define the terms ‘‘compilation’’ and

‘‘inter pretation’’ in a more precise way. In this book, compilation will

refer to the process of translating a for mal language S to a for mal

language O by a program C. ‘‘S’’ is called the source language of

the process, ‘‘O’’ is called the object language, and ‘‘C’’ the

compiler. Inter pretation is simply a synonym for program

execution, be it by a hardware machine, a vir tual machine, or a

human being.

Given this definition, even the first BASIC interpreters were in fact

compilers and inter preters at the same time. The compiler part

translated the input language BASIC into some internal for m that

18 Compilers

was suitable for efficient interpretation. The interpreter part gave

meaning to the internal for m by ‘‘r unning’’—i.e. executing—it. The

stages of the process were tightly coupled in this case, so the

compiler and interpreter were inseparable parts of the language

implementation but, nevertheless, both stages were present.

Another rather useless classification is that of compiled and

inter preted languages. Even primordial BASIC is compiled to a

token stream and not stored in memory as literal text, and even

the output of the most clever and aggressive optimizing compiler is

inter preted by a CPU in the end. And then any language that can

be interpreted can be compiled as well. If we want to make this

differentiation at all, then ‘‘inter preted’’ (by software) versus

‘‘compiled’’ (to native code) is a property of the implementation

and not one of the language.

Even a code beautifier—a program that improves the for matting of

an input program—is a compiler. It just happens to have the same

source and object language. The same is true for a code

obfuscator, a program that scrambles source code while

preser ving its meaning.

Compilers come in var ious flavors, from simple translators that

tur n their input into a different representation, like ear ly BASIC

tokenizers, to full-blown stand-alone optimizing compilers with

extensive runtime librar ies. How ever, they all employ the same

basic principles.

Machine M1

Compiler C

Machine M2

Object OSource S

Figure 1: Compiler model

A compiler is a program C written in language L running on

machine M1 that translates source language S to object language

O, which may be executable on a machine M2. S, O, and L may

be all different, all the same, or any var iation in between. Both M1

and M2 may be actual hardware or virtual machines. Here is a

non-conclusive list of var iations:

Compilers 19

• When S ≠ O, then the compiler is an ‘‘ordinar y’’ compiler.

• When S = L, then the compiler is self-hosting. 1

• When M1 ≠ M2, the compiler is a cross-compiler. 2

• When S = O, the compiler is a code beautifier, obfuscator, etc.

• When O is not a for mal language, C is a code analyzer. 3

In this book we will concentrate on the first and most common

case. We will have a thorough look at a compiler for a subset of

the ANSI C programming language (C89) for the 386 architecture.

We will explore the stages of compilation from source code

analysis to native code generation. We will also cover the runtime

librar y and the interface to the operating system (FreeBSD).

The compiler has been designed to be simple and portable.

Understanding its principles does not require any prior knowledge

other than mastery of C or a comparable programming language.

For those who are not familiar with the language, a terse C primer

can be found in the appendix (pg. 421). The compiler itself is

wr itten in pure ANSI C, so it should compile fine on any 32-bit

system providing a preexisting C compiler. Por ting it to other

popular free Unix clones (e.g. Linux) should be easy. Once

bootstrapped, the compiler is capable of compiling itself.

How Does a Compiler Wor k?
All but the most simple compilers are divided into several stages

or phases, and each of these phases belongs to one of the two

pr incipal par ts of the compiler called its front-end and its back-end.

The front-end is located on the input side of the compiler. It

analyzes the source program and makes sure that it is free of

formal errors, such as misspelled keywords, wrong operator

symbols, unbalanced parentheses or scope delimiters, etc. This

par t also collects infor mation about symbols used in the program

1 It can compile itself.
2 A compiler that generates code for a CPU and/or platfor m other than its

host CPU and/or platfor m.
3 A generator of code metrics, code quality reports, etc.

20 How Does a Compiler Wor k?

and associates symbol names with values, addresses, or other

entities.

The back-end is on the output side of the compiler. It generates an

object program that has the same meaning as the source program

read by the front-end. We say that the compiler ‘‘preser ves the

semantics of the program being compiled’’. The semantics of a

program is what it ‘‘does’’ while the syntax of a program is what it

‘‘looks like’’. A compiler typically reads a program having one

syntax and generates a program with a different syntax, but the

two programs will always have the same semantics. 1

Preser vation of semantics is the single most important design goal

of a compiler. The semantics of a source language is mostly

specified semi-for mally and sometimes for mally. Some for mal

semantics are even suitable for generating a compiler from them,

but this is not (yet) the normal case these days. Languages with

formal semantics include, for example, Scheme or Standard ML

(SML). Some languages with infor mal or semi-for mal semantics

are Common Lisp, Java, C++, and C.

The front-end of a compiler is typically portable and deals with the

input language in an abstract way, while the back-end is normally

coupled to a specific architecture. When a compiler is intended to

be portable among multiple architectures, the front-end and back-

end are loosely coupled, for example by passing infor mation from

one to the other using a for mal protocol or a ‘‘glue language’’.

Compilers for single architectures allow for a tighter coupling of the

stages and therefore typically generate faster and/or more

compact code.

Most phases of compilation belong either to the front-end or the

back-end, but some may belong to both of them. The optimization

phase, which attempts to simplify the program, is often spread out

over both parts, because there are some optimizations that are

best applied to an abstract representation of a program, while

others can only be perfor med in the back-end, because they

require some knowledge about a specific target. In compiler-

1 With the sole exception of code analyzers, which are intended to gener-

ate human-readable meta-infor mation instead of executable programs.

How Does a Compiler Wor k? 21

speak, a target is the architecture on which the generated code

will run. The SubC compiler discussed in this book will target the

386 processor.

Phases of Compilation
All the phases of compilation are outlined in detail in figure 2

(shaded boxes denote processes, clear boxes represent data).

The first phase on the input side of the compiler is the lexical

analysis. This step transfor ms the source program into a stream

of small units called tokens. Each token represents a small textual

region of the source program, like a numer ic literal, a keyword, an

operator, etc. This phase also detects and reports input characters

that are not part of the source language and sequences of text

that cannot be tokenized. 1

To illustrate the principle of tokenization, here comes a small

sample program, in its ‘‘natural’’ for m on the left and with blanks

between the individual tokens on the right:

void printrev(char *s) { void printrev (char * s) {

if (*s) { if (* s) {

printrev(s+1); printrev (s + 1) ;

putchar(*s); putchar (* s) ;

} }

} }

The lexical analysis phase is also referred to as the scanner. In

fact scanning does a bit more than the above . It does not only split

up the source program into manageable parts, but it also

categor izes the individual parts. For instance, the scanner output

of the above program may look like this (where each symbol

denotes a unique small integer):

VOID IDENT LPAREN CHAR STAR IDENT RPAREN LBRACE

IF LPAREN STAR IDENT RPAREN LBRACE

IDENT LPAREN IDENT PLUS INTLIT RPAREN SEMI

IDENT LPAREN STAR IDENT RPAREN SEMI

RBRACE RBRACE

1 If such sequences exist in the source language; see pg. 82.

22 Phases of Compilation

Source program

Lexical analysis

Token stream

Syntax analysis

Abstract program

Symbol Table

Semantic analysis

Interface

Interface

Optimizer

Abstract program

Code generator

Object program

to back-end

from front-end

Front-End Back-End

Figure 2: Phases of compilation

Of course this representation loses some infor mation, because all

the symbols (like s or putchar) are simply referred to as IDENT

(identifiers), and the value of the INTLIT (integer literal) is lost.

This is why the scanner adds attr ibutes to some of the tokens,

resulting in:

VOID IDENT(revstr) LPAREN CHAR STAR IDENT(s) RPAREN LBRACE

IF LPAREN STAR IDENT(s) RPAREN LBRACE

IDENT(revstr) LPAREN IDENT(s) PLUS INTLIT(1) RPAREN SEMI

IDENT(putchar) LPAREN STAR IDENT(s) RPAREN SEMI

RBRACE RBRACE

This would be the output of the lexical analysis stage. Some ver y

simple compilers may perfor m in-place textual comparisons

Phases of Compilation 23

instead of scanning their input. To find out whether the current

input token is the if keyword, for instance, they would do

something like

if (!strncmp(src, "if", 2) && !isalnum(src[2])) {

/* got an IF */

}

This wor ks fine for small languages with few operators and

keywords, but does not scale up well, because quite a few

compar isons may have to be perfor med to reach a procedure that

can handle a specific token. Even the SubC language, which is

still a subset of C89, knows 77 different token types, so tens of

compar isons will have to be made on average before a token can

ev entually be processed. In larger languages such as C++ or

COBOL, the number of comparisons may easily range in the

hundreds and involve longer strings due to longer keywords. This

is where tokenization really pays off, because it allows to compare

tokens using the == operator :

if (IF == Token) {

/* got an IF */

}

The next step is to make sure that the sequence of tokens

delivered by the scanner for ms a valid sentence of the source

language. Like natural languages, for mal languages have

grammars that define what a correct sentence looks like. The

grammar describes the syntax of a language, and the syntax

analyzer compares the token stream to the rules of a grammar.

The syntax analyzer is also called the parser and the analysis

itself is called ‘‘parsing’’.

The parser is the heart of the compiler: it pulls the source program

in through the scanner and emits an object program through the

back-end. The syntax of the source program controls the entire

process, which is why this approach is called syntax-directed

translation.

Most of the error reporting is also done by the parser, because

most errors that can be caught by a compiler are syntax errors, i.e.

24 Phases of Compilation

input sequences that do not match any rule in the grammar of the

source language.

When parsing succeeds, i.e. no for mal errors are found, the parser

transfor ms the token stream into an even more abstract for m. The

abstract program constr ucted at this stage may have var ious

forms, but the most common and most practical one is probably

the abstract syntax tree (AST).

LOGOR

EQUAL

INTLIT(’_’) IDENT(c)

LOGAND

LTEQ LTEQ

INTLIT(’a’) IDENT(c) IDENT(c) INTLIT(’z’)

Figure 3: Abstract syntax tree (AST)

ASTs tend to be rather large, which is why we use a smaller

example to illustrate them. The C expression

’_’ == c || ’a’ <= c && c <= ’z’

would generate the AST displayed in figure 3. (EQUAL denotes

the == operator, LTEQ is <=, LOGAND is &&, and LOGOR is ||).

The AST reflects the structure of the input program according to

the rules specified in the source language’s grammar (we will

discuss grammars in great detail at a later point). For example, the

AST reflects the fact that the && operator has a higher precedence

than the || operator. 1

The output of the parser is suitable for more complex operations,

because it allows to refer to subsentences by their root nodes. For

instance, the subexpression

’_’ == c

of the above expression may be referred to simply by pointing to

the EQUAL node in the corresponding AST.

1 When these two operators occur in the same sentence without any ex-

plicit grouping (by parentheses), && has to be evaluated before ||.

Phases of Compilation 25

The parser also builds the symbol table. Symbol tables are used

to store the names of identifiers and their associated meta data,

like addresses, values, types, ar ity, 1 array sizes, etc. Most

compilers for procedural languages employ two symbol tables:

one for global symbols and one for local symbols and procedure

parameters.

The symbol table is heavily used by all subsequent phases of

compilation. The next stage, semantic analysis, uses it to look up

all kinds of properties of identifiers. It perfor ms tasks such as type

checking and context checking. The for mer has to be done on the

semantic level, because the correctness of a statement like

x = 0;

cannot be decided without referr ing to meta infor mation in the

symbol table. When x is an array or a function, for instance, the

above sentence is semantically incorrect. Its syntax is correct, but

it makes no sense, because C cannot assign a value to an array

or a function. This kind of error cannot be detected on a purely

syntactic level, because an indeterminate number of tokens may

appear between the definition of x and a reference to it.

The reporting of undefined identifiers is also done at this stage,

because the semantics of a statement cannot be ver ified in a

static language like C without knowing the properties of an

identifier. (In a dynamic language such tests can sometimes be

postponed to the run time of the program.)

Context checking finds out whether a statement appears in a

proper context. For instance, a break statement is only valid

inside of a loop or a switch statement and would be flagged

otherwise. This kind of analysis could also be perfor med at the

syntax level, but this often leads to cumbersome for mal

specifications, so in practice it is mostly perfor med at the semantic

level.

The interface between front-end and back-end can be

implemented in a var iety of ways. In the most simple case the

parser calls the procedures of the code generator directly. In this

1 The number of arguments of a procedure.

26 Phases of Compilation

case the back-end does not even need access to the symbol

table. When the back-end perfor ms more complex operations than

just emitting predefined fragments of code, though, the interface

must provide procedures for accessing the symbol table from

within the back-end and transferr ing the abstract program to the

back-end stages. The most sophisticated approach would be to

generate code in a portable abstract glue language and pass that

program to the back-end. The abstract program would contain all

infor mation needed for optimizing the code and synthesizing

native machine instructions. No access to the symbol table would

be necessary in this case.

No matter in which way the abstract program and the related meta

infor mation is transpor ted to the back-end, the next step would be

the optimization phase. In figure 2, optimization has been placed

in the back-end exclusively, but there are some optimizations that

can be perfor med in the front-end as well. When both is possible,

an optimization should be perfor med in the front-end. Only

machine-dependent code should be moved to the back-end. A

typical platfor m-neutral optimization is constant expression folding,

which collapses subtrees of constant factors into single factors. It

is illustrated in figure 4.

-

17 +

4 5

-

17 9

8

17-(4+5) 17-9 8

Figure 4: Constant folding

Constant folding is particular ly impor tant, because many

operations that appear to be simple at the language level may

expand to constant expressions when generating an abstract

program. For instance, the expression

a[0] = 0;

Phases of Compilation 27

(where a is an array) may expand to a constant expression adding

zero to the address of the array, which can be optimized away.

However, adding an arbitrar y (non-zero) constant to the address of

an array would require to know what the code loading the address

will look like, so it must be done in the back-end. Even constant

folding may require some knowledge about the target architecture,

for example for detecting numer ic overflow. In the case of C,

por table constant folding must be limited to the range

−32768 . . . 32767, because this is the minimal numer ic range of

the int type.

When in doubt, it is always better not to perfor m an optimization.

It is better to generate inefficient code than to break the

preser vation of semantics.

The abstract program generated by the optimizer may be an AST

or a more specialized representation, like three-address code,

which emulates a virtual architecture. The optimizer may also

generate trees of actual machine code instructions for the target

platfor m, thereby integrating the stages of back-end optimization

and code synthesis.

The final stage, the code generator synthesizes instr uctions for the

target machine and emits them to the output. This is why it is also

called the emitter. Machine instructions are typically generated

from entire subtrees rather than individual nodes of the abstract

program because, up to some limit, considering larger subtrees

will lead to more efficient code.

For instance, a naive synthesizer may examine each single node

of the program

=

a +

a 5

a = a + 5

28 Phases of Compilation

and generate code that wor ks as follows:

• load a into register r1;

• load 5 into register r2;

• add r2 to r1;

• store r1 in a.

A synthesizer that examines the entire expression before emitting

any code could recognize that a constant is being added to a

variable and synthesize the single instruction

• add 5 to a.

This process is called ‘‘synthesis’’ because it synthesizes more

complex instr uctions from simpler ones contained in the abstract

program. The front-end stages of a compiler decompose complex

instr uctions formulated in the source language into simple

instr uctions of an abstract for m. The back-end stages then

reconstr uct complex instr uctions from simpler ones, trying to make

best use of the features of the target architecture.

The overall task of a compiler may be thought of as mapping a

source program PS of a source language S to the most efficient

program PO of an object language O that has the same meaning

as PS .

A Simplified Model
The SubC compiler, which will be discussed in the main part of

this book, will use a simplified model of compilation as depicted in

figure 5.

Like the full model, this simplified model uses a scanner producing

a token stream that is fed to the parser. How ever, the semantic

analysis phase is tightly coupled to the parser in this model, so the

compiler perfor ms semantic analysis basically ‘‘inside of’’ the

parser. No abstract program is generated and the symbol table is

also set up in the syntactic analysis phase.

The interface to the back end is a simple procedure call interface,

where each procedure in the code generator emits a

A Simplified Model 29

parameter ized code fragment. The parameters are passed to the

code generator via procedure calls. Sometimes these parameters

identify slots in the symbol table, allowing the back-end direct

access to the attributes of symbols. Because the code generator is

only loosely coupled to the rest of the compiler, retargeting the

compiler, i.e. por ting it to a new target platfor m, involves just the

creation of a new set of procedures that emit the desired object

code.

The SubC compiler does not have an optimizer and it often emits

inefficient and sometimes even redundant code. Emphasis was

put on correctness rather than cleverness. This is the price that we

pay for a simple and easy-to-comprehend compiler. How ever,

SubC is not that bad after all. The entire compiler including its full

runtime librar y bootstraps itself in just about two seconds on a

mainstream 750MHz1 processor, and it is quite sufficient for a lot

of every-day programming tasks.

1 No, this text is not that ancient; the author is just content with old hard-

ware. He has upgraded from 600Mhz to 750MHz since the first edition in

2012, though.

30 A Simplified Model

Source program

Lexical analysis

Token stream

Syntax analysis
Semantic analysis

Interface

Symbol Table

Code generator

Object program

Figure 5: A simplified compiler model

31

The Peculiar ities of C
Viewed superficially, C is a simple, rather low lev el, block-

str uctured, procedural language. How ever, it is also quirky as hell.

It has quite some hidden complexity in places where you would

least expect it. It is not a language that an aspiring compiler-writer

would want to implement in their first project. Not without the help

of a decent textbook, that is.

For instance, C has 15 levels of operator precedence, quite a

weird declaration syntax, and hairy pointer semantics. Quick,

what does

int *(*foo[17])();

declare? And what do the following expressions deliver?

a[0] **a++

*a *(*a)++

*a[0] (**a)++

(*a)[0] ++**a

*a++ *++*a

(*a)++ **++a

*++a

Even the SubC compiler discussed in this book will have to get all

of the above expressions right! 1

Most of the complexity of the C compiler is hidden in the

expression parser, the part of the parser that analyzes the

smallest parts of the language, the for mulae used in its

statements. It not only does have to suppor t all of the above

constr ucts, it also has to do proper pointer addition and

subtraction, even in the += and -= operations, etc. There is quite a

bit of wor k hidden in this superficially simple language.

On the other hand, the C standard (‘‘The C Programming

Language, 2nd Ed.’’ (TCPL2) by K&R) gives quite a bit of leeway

to the implementor. This is a good thing for a compiler-writer. It

1 But not the declaration.

32 The Peculiar ities of C

allows exper ienced implementors to choose the most efficient

approach and the beginner to use the most simple solution. This is

also the primar y reason why C is known as a fast and efficient

language: it is underspecified, i.e., it allows the implementor to

inter pret the specification quite freely in order to squeeze out a few

more optimizations. How ever, this is often done at the cost of

clar ity to the user (of the C language). For instance, the statement

f(putchar(’a’), putchar(’b’), putchar(’c’));

may print any per mutation of ‘‘a’’, ‘‘b’’, and ‘‘c’’, because the

standard leaves the order of argument evaluation unspecified.

‘‘Unspecified’’ means that a compiler can evaluate the arguments

to a function in any order it likes. It can even use different orders at

different optimization levels or a different order for exactly the

same statement when compiled twice in a row. It could throw a

dice. ‘‘Unspecified’’ means: just do not rely on it.

It gets even worse when adding in the increment operators. The

program fragment

x = 0; f(x++, x++);

may pass (0, 0) to f or (0, 1), or (1, 0). This is because the

standard only says that the post-increment has to take place

before the end of the statement. 1 So the compiler may take the

first x, increment it, and then take the second x [giving (0, 1)]. Or it

may evaluate the second argument first [(1, 0)]. Or it may decide to

increment x by two after calling the function, resulting in (0, 0).

To the compiler writer, of course, such leeway is a great

advantage, because it allows them to pick any var iant that is

convenient to them—and therefore to us! In this text, we will

always choose the most simple and obvious version in order to

keep the compiler source code manageable.

Studying a compiler for a language often changes the way in

which we see a language, and mostly for the better. Even if you

already have some programming exper ience in C, this textbook

may rev eal some of the more subtle details of the language to you.

1 More specifically: before the next ‘‘sequence-point’’, which would be the

; in this case.

The Peculiar ities of C 33

For example:

Why are statements like i = i++; not a good idea?

Is *x[1] the indirection of an array element or the array element

of an indirection?

Why will the declaration

extern char *foo[];

br ing you into trouble when the identifier was defined in a different

file as

char **foo;

while there is absolutely no difference between the meanings of

the following two declarations?

int main(int argc, char **argv);

int main(int argc, char *argv[]);

34 The Peculiar ities of C

Answers

In case you want to ver ify your answers to the questions at the

beginning of this chapter:

int *(*foo[17])(); An array (size 17) of pointers to

functions returning pointer to int

a[0] retur n first element of a

*a retur n object pointed to by a

*a[0] object pointed to by a[0]

(*a)[0] retur n first element of *a

*a++ retur n *a, then increment a

(*a)++ retur n *a, then increment *a

*++a increment a, then return *a

**a++ retur n **a, then increment a

*(*a)++ retur n **a, then increment *a

(**a)++ retur n **a, then increment **a

++**a increment **a, then return **a

*++*a increment *a, then return **a

**++a increment a, then return **a

